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Abstract

The term trajectory-planning has been used to refer to the process of determining

the time-history or "joint trajectory" of each joint variable corresponding to a

specified trajectory of the end-effector of the manipulator. The trajectory-planning

problem, in its original form, was solved as a purely kinematic problem. The

drawback of this approach is that there is no guarantee that the actuators can deliver

the effort necessary to track the planned trajectory. Furthermore, feedback-controller

synthesis was addressed as a separate problem and without consideration of the

actuator constraints. Later studies, which were concerned with the development of

high-speed and high-precision manipulators did take actuator constraints into

account but the control strategy used was primarily based on the classical open-loop

optimal control approach. The performance of the robot manipulator resulting from

the implementation of such an open-loop approach is extremely sensitive to

uncertainty in the dynamic model and disturbances which may act on the

manipulator. The addition of a feedback controller may not resolve this problem

because the feedback control law is usually synthesized without taking the actuator

constraints into account. To overcome these limitations, we have developed a

motion planning approach which addresses the kinematics, dynamics and feedback-

control of a manipulator in a unified-framework. Actuator constraints are taken into

account explicitly and a-priori in the synthesis of the feedback control law. Therefore

the result of applying the motion planning approach described in this thesis is not

only the determination of the entire set of joint trajectories but also a complete

specification of the feedback-control strategy which would yield these joint

trajectories without violating actuator constraints.

The motion planning framework is developed in an optimization setting, which

allows the analyst to (i) exploit any available freedom in the task specification of the

manipulator, and (ii) exploit (kinematic) redundancy in the case of kinematically

redundant manipulators. The effectiveness of the unified motion planning approach

is demonstrated on two problems which are of practical interest in manipulator

robotics. In the first problem feedback-controlled motions which minimize task time

are planned for non-redundant manipulators. The second problem, which has useful

applications in Space Robotics, addresses the use of kinematic redundancy in

planning motions which minimize the magnitude of the reactions transmitted to the

base of a manipulator.
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Chapter 1

Introduction

(

1.1 Motivation

This thesis is about the development and application of a unified motion planning

approach for robotic manipulators. In order to motivate the need for such a unified

approach, it is useful to first briefly review existing motion-planning approaches.

Traditionally, the term trajectory-planning has been used to refer to the process of

determining the time-history or "joint trajectory" of each joint variable corresponding to a

specified trajectory of the end-effector of the manipulator. The trajectory-planning

problem, in its original form, was solved as a purely kinematic problem. The drawback of

this approach is that there is no guarantee that the actuators can deliver the effort

necessary to track the planned trajectory. Furthermore, feedback-controller synthesis was

addressed as a separate problem and without consideration of the actuator constraints.

Later studies, which were concerned with the development of high-speed and high-

precision manipulators did take actuator constraints into account but the control strategy

used was based on the classical open-loop optimal control approach or variations thereof.

The performance of the robot manipulator resulting from the implementation of such an

open-loop approach is extremely sensitive to uncertainty in the dynamic model and

disturbances which may act on the manipulator. The addition of a feedback controller

may not resolve this problem because the feedback control law is usually synthesized

without taking the actuator constraints into account. To overcome these limitations, we

have developed a motion planning approach which addresses the kinematics, dynamics

and feedback-control of a manipulator in a unified-framework. Actuator constraints arc

taken into account explicitly and a-priori in the synthesis of the feedback control law.
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Thereforetheresult of applying the motion planning approach described in this thesis is

not only the determination of the entire set of joint trajectories but also a complete

specification of the feedback-control strategy which would yield these joint trajectories

without violating actuator constraints. Furthermore since the motion planning framework

is developed in an optimization setting, one can plan motions and synthesize control laws

which are optimal in some useful sense.

1.2 Contributions of the Research

The primary contributions of this research are the development, implementation and

application of a unified motion planning approach for redundant and non-redundant

manipulators. More specifically the contributions of this research are as follows:

,

.

.

,

The unified motion planning approach simultaneously plans the
manipulator trajectory and synthesizes a feedback control law which does
not violate actuator constraints.

Multi-criterion optimization is used as an integral part of the framework to

plan trajectories which optimize dynamic performance.

The incorporation of optimization in the motion planning approach allows

the analyst to (i) exploit any available freedom in the task specification of

the manipulator, and (ii) exploit (kinematic) redundancy in the case of
kinematically redundant manipulators.

The unified motion planning approach, by avoiding the drawbacks of most

commonly used motion planning approaches, allows one to plan realizable
motions in a relatively straightforward manner.

1.3 Overview of the Contents

The thesis is organized as follows. In Chapter 2 we state the goals of motion

planning and conclude with a formal definition of motion planning. The unified motion

planning approach, which underlies the present research, is developed in Chapter 3.

Existing methods for trajectory planning and controller synthesis are first surveyed and

then used to motivate the proposed motion planning approach. The basic building blocks

in the unified approach are then described. The final section of Chapter 3 describes the

proposed motion planning approach which integrates trajectory planning and feedback

controller synthesis to plan feasible and optimal manipulator motions.

Chapter 4 deals with the application of the unified motion planning approach to non-

redundant manipulators. After discussing the specifications of end-effector tasks and the
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parameterizationof end-effector trajectories,a procedureis developed for planning

feasibleandoptimal motionsfor non-redundantmanipulators. The effectivenessof the

unified motion planningapproachis thendemonstratedby using it to plan a feedback-

controlledmotionwhichminimizesthetasktime.

Chapter5 is theredundantmanipulatorcounterpartof Chapter4. Specialattentionis

paid to theproperresolutionandparametricrepresentationof kinematicredundancy.As

a demonstration of the usefulness of the unified motion planning approach we address the

problem of minimizing the magnitude of the reactions transmitted to the base of a

manipulator with one excess (or redundant) degree of freedom; the base-reaction

minimization problem has useful applications to manipulators operating in "zero-gravity"

environments in space.

An issue which must be confronted in using redundant manipulators is whether they

are really effective in improving dynamic peformance. This issue is important in its own

right and is studied in Chapter 6. In this chapter we also discuss certain issues which

must be considered in the implementation of the unified motion planning approach.

Finally, in Chapter 7 we summarize the work described in this thesis, draw some

conclusions from the investigation and make some suggestions for future research.



Chapter 2

Definition of the Motion Planning Problem

2.1 Overview

In robotic manipulator work, trajectory planning refers to the process of obtaining

the joint trajectories corresponding to a given task specification for the end-effector. We

are interested in planning motions for high-performance manipulators, i.e. manipulators

which must follow prescribed trajectories at very high speed and with very high

accuracy. In order to ensure that the motion plan is robust, i.e. insensitive to

uncertainties in the model and disturbances which might act on the manipulator, the

manipulator must be feedback-controlled. Therefore in the present work we use the term

motion planning to describe the planning of the optimal joint trajectories and also the

determination of the optimal gains in a prescribed feedback control strategy. The

underlying philosophy of the present work is that proper motion planning should

simultaneously address both trajectory planning and controller synthesis.

In our motion planning problem, we make the assumption that the structure of the

manipulator and the structure of the conlroller are known a priori. The controller

parameter vector, denoted by Pc, consists of all the unknown parameters or "gains" of the

controller strategy. For the present, it is convenient to regard motion planning very

simply as the determination of the combination of the optimal manipulator trajectory and

the optimal controller parameter vector Pc"

The rest of the chapter is devoted to a more detailed discussion of motion-planning

culminating with a formal statement of motion- planning in Section 2.4.
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2.2 Primary Goal of Motion Planning

Before we state the primary goal of motion planning, we wiU first need to define task

specifications, end-effector trajectory, and joint trajectory.

Task specifications are high-level descriptions of the desired end-effector motion

(xa,(t)). For example, ff the task is for the end-effector of the manipulator to pick up an

object at point A and place it at point B, then the task specifications would be the

positions of points A and B in a coordinate system {U} which is fixed to the base of the

manipulator.

If x 1, x 2, and x 3 denote the Cartesian coordinates of the reference point on the end-

effector in the coordinate system {U} fixed to the base of the manipualtor, then

x= [x 1 ,x 2,x 3]T. (2.1)

is the vector which denotes the position of the end-effector and x(.) is calledthe end-

effector trajectory or task-space trajectory. For a planar manipulator, x3 = O.

.2

x 2

/
/

xZ

Fig. 2.1 A Planar m Degree-of-Freedom Manipulator
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Consideran m degree-of-freedom manipulator with m revolute joints as shown in

Fig. 2.1. Let qi denote the joint variable at joint i. For an m degrees-of-freedom

manipulator, the joint variable vector q _ R m can be defined as

q=[ql,q2 ..... ,qm ]T" (2.2)

The time-history qi, (i=l,2,...m), of each joint variable is called the joint trajectory.

The vector of joint trajectories for all the joints is called the joint trajectory vector and is

denoted by q(.), (In the sequel q(.) will be simply referred to as the joint trajectory rather

than the joint trajectory vector.)

Before we define the primary goal of the manipulator, it is important that we identify

the freedom provided by the task specifications and/or by the kinematic redundancy. In

the following discussion we will illustrate the freedom that one can exploit in motion

planning problems.

If the number of degrees of freedom (m) is greater than the minimum number of

degrees of freedom (n) required to perform a task, then the manipulator is called a

kinematically redundant manipulator with p=m-n degrees of kinematic redundancy.

When p is equal to zero, the manipulator is a non-redundant manipulator. The kinematic

relationship between the end-effector position x and the joint variable vector q can be

described by a nonlinear mapping called the forward kinematic mapping _ : R rn---) R n

which is expressed as follows:

: (ql,q2,"',qm)-° (x1.... ,xn). (2.3)

The "end-effector" velocity .17is related to the joint velocity vector q by the following

well known linear relationship [10]:

a?=Jq, (2.4)

where J =--_e R na_n is the so-called Manipulator Jacobian matrix.

Using Eq. (2.4), we obtain the following linear relationship between the desired joint

velocity qd and the desired end-effector velocity "_d:
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xd=JOd. (2.5)

For non-redundant manipulators, J is square and, in general, invertible and (lar can be

uniquely obtained by premultiplying Ycd by j.1. Therefore, it is clear that the freedom that

one can exploit in trajectory planning comes only from any available freedom in the task

specification of the end-effector trajectory x d.

However, in the case of a redundant manipulator, since re>n, there are in general an

inf'mite number (**P) of joint velocity vectors qd that satisfy Eq. (2.5). This implies that

there are an infinite number of joint trajectories that can be used to achieve the task

regardless of whether there is any freedom in the task specifications.

In reality, not all of the desired joint trajectories qd(') computed from Eq. (2.5) are

realizable due to the fact that some of the trajectories would require torques which exceed

the capabilities of the actuators. The purpose of motion planning is to determine an

appropriate joint trajectory vector qd and the paramters in the controller, such that, under

the actuator constraints the primary goa/of the task, which is stated below, is achieved.

The primary goal of motion planning is to exploit the freedom in the end-effector

trajectory, the joint-space trajectory, and the choice of the magnitudes of the controller

parameters to plan a trajectory for which the associated actuator inputs do not exceed

their bounds.

2.3 Secondary Goal of Motion Planning

In addition to satisfying the primary goal of motion planning, we are also interested

in exploiting the freedom in both the task specifications and the feedback control law to

achieve an additional dynamic performance objective.

If I denotes the scalar which is a measure of dynamic performance, then I can be

expressed in the well-known general form

_1" o ..

l=fo h(q,q,q,t)dt + _(q(_),¢(tf),_(tf)). (2.6)

where h and • denote functions defined by the analyst and _r denotes the final time.



In certain applications where we are only concerned with the peak value of a

function h, we can define I as the maximum value of a function h(.) over a time interval:

l=max {h(q,q,_)}. (2.7)

As will be seen in the sequel, the general performance index defined in Eq. (2.6) can

be used as a measure of dynamic performance in several problems of practical interest,

for example, the base reaction minimization problem and the minimum-time problem.

The secondary goal of motion planning is to plan a trajectory which (also) minimizes

the performance index (2.6) or (2.7).

2.4 Motion Planning

Having defined the primary goal and secondary goal of our motion planning

approach, we are in a position to formally state the motion planning problem for a

feedback-controlled manipulator:

Determine the desired joint trajectory qd and controller parameter vector Pc such

that the actual end-effector trajectory x(O

(i) satisfies the task specifications;

(ii) is robust (i.e. achieved by a feedback control strategy);

(iii) does not violate actuator constraints;

(iv) optimizes an additional measure of dynamic performance.

The first three motion requirements are related to the satisfaction of the primary goal of

motion planning while the last motion requirement is used to achieve the secondary goal.

Having defined the motion-planning problem, the next step, of course, is to describe

the approach that we have developed for obtaining a good motion plan. This is the

subject of the next chapter.
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Chapter 3

Unified Motion Planning Approach

3.1 Introduction

In this chapter, we will motivate the need for the unified motion planning approach

and also give an overview of this approach. In Section 3.2, we point out the drawbacks

of the conventional motion planning approaches and identify some of the research issues

that we have to resolve. In Section 3.3, we survey relevant research in the areas of

motion planning and comment on the strength and limitations of these works. Finally in

Section 3.4 we describe the Unified Motion Planning Approach and the building blocks

which are essential to its formulation.

3.2 Why do we need another motion planning approach?

There have been many studies addressing different aspects of motion planning and

controller design for robotic manipulators. Some of these studies were devoted to

solving purely kinematic problems, for example, determining inverse kinematic solutions

for manipulators of different kinematic structures [1,7,10] or developing useful

representations for joint-space trajectories such as the 4-3-4 trajectory and the five-cubic

spline trajectory [10,15]. There are also numerous studies which address the dynamics of

a manipulator, for example, Luh-Walker-Paul's algorithm [1] for computing the inverse

dynamics of a manipulator and Hollerbach's recursive Lagrangian formulation of

dynamic equations [1,15]. There axe also numerous studies addressing the design of

feedback controllers for manipulators [1,10,12,15].

Since there are so many studies in the area of motion planning, a natural question

one might ask is why we need another motion planning approach.
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To answerthis question,we will first look at three classes of motion planning

approaches proposed in the literature. The purpose of the following discussion is to

present a general overview of the conventional approaches, to point out the drawback of

these approaches and to thereby motivate some of the research issues addressed in this

study. In Section 3.3, we will present a survey of the conventional approaches.

The In'st class of motion planning approaches is the purely kinematic approach

[7,14,16,26,37]. The objective of these approaches is to determine a desired joint

trajectory vector qd for a given task specification. To guarantee that the planned motions

do not require torques which exceed the bounds on actuator efforts some researchers have

imposed kinematic constraints such as speed limits and acceleration limits on the

allowable solutions. However, these kinematic constraints are not derived from the

equations of motions of a manipulator and therefore the major drawback of this approach

is that even though the kinematic constraints are satisfied, the trajectory may still require

torques that are in excess of what the actuator can deliver.

To take actuator constraints into account, some researchers proposed the constrained

open-loop approach for non-redundant manipulators [6,19,39]. In these approaches, the

open-loop torque vector, u*, which is required to achieve the desired end-effector

trajectory is computed and used as the "control" input. The major drawback of this

approach is that it is open-loop and therefore non-robust, i.e. the performance of the

manipulator is sensitive to uncertainties in the model and disturbances.

To remedy the robustness problem in the above approach, an obvious solution is to

simply add a feedback controller to the constrained open-loop approach to make it robust

[12]. Based on this rationale, the controller effort vector u would consist of two parts: u*

and u. The first part of the controller effort, u", is computed based on the constrained

open-loop approach. The second part of the controller effort, u comes from the feedback

control strategy which is usually designed without considering the actuator constraints.

The major drawback of this approach is that it is unclear how one would distribute the

actuator constraint vector Ureax between u* and u such that u = u* + u is always less than

the actuator constraint vector, urea.r-

There is therefore a need for a motion planning approach which plans a feedback
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controlled trajectory which does not violate the actuator constraints. The approach

developed in this thesis uses a feedback control strategy which a-priori takes actuator

constraints into account, thereby ensuring that the magnitudes of the actuator torques

based on the control law do not exceed the (specified) bounds. In addition, our approach

allows us to exploit any freedoms available in the manipulator task specifications and thc

freedoms available in the magnitudes of the controller parameters to simultaneously plan

a trajectory and synthesize a feedback control law to optimize dynamic performance.

3.3 Survey of Related Research

Having addressed the need for a more complete motion planning approach, we will

now survey some of the related research, specifically in the areas of trajectory planning,

controller design and dynamic performance optimization of redundant and non-redundant

manipulators. The purpose of this survey is to explore the strength and shortcomings of

the existing studies and highlight some of the tools that we will use from these studies for

the development of the unified motion planning approach.

3.3.1 Trajectory Planning of Manipulators

In this section we review studies that only address the kinematics of a manipulator 1.

A standard problem is the determination of the joint-trajectory for a completely or

partially specified end-effector trajectory. We will discuss this problem separately for

non-redundant and redundant manipulators.

3.3.1.1 Non.redundant Manipulators

Many researchers have investigated approaches for planning straight-line end-

effector trajectories. Paul [31] proposed an approach that breaks the end-effector

trajectory into a number of straight-line segments. The points where these segments meet

are called the cartesian knot points. These cartesian knot points are then mapped into

corresponding joint-space configurations. A quadratic polynomial is then used to connect

these joint configurations to form a smooth joint trajectory.

Fu et ai. [15] presented various joint-space trajectory interpolations such as the 4-3-4

lln Section 3.3.2, we will survey trajectory planning studies which consider the dynamics of a
manipulator.
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joint trajectory, 3-5-3 cubic joint trajectory and 5-cubic spline trajectory. These

representations enable one to obtain smooth joint trajectories for pick and place

operations.

Lin et ai. [24] formulated an off-line approach for constructing a cubic-spline

polynomial joint trajectory to fit selected cartesian knot points. They developed an

algorithm that minimizes the total traveling time of the manipulator by varying the time

intervals of the cubic polynomials. In their studies, they imposed kinematic constraints

on the joint velocity and joint acceleration. One should note that in this study, the

kinematic constraints are assigned arbitrarily instead of being derived from the equations

of motion and the actuator constraints.

In all the above studies, there is no guarantee that the joint trajectory obtained from

the trajectory planning algorithm can be executed successfully with or without feedback

as there is no consideration of the dynamics of the manipulator and the actuator

constraints in the analysis.

3.3.1.2 Redundant Manipulators

In the majority of the redundant manipulator studies, the problem of interest is to

exploit the freedom available in the joint trajectory to achieve an additional task while the

end-effector performs the primary task of tracking a prescribed end-effector trajectory.

An important research issue in the kinematics of redundant manipulators is referred

to in the literature as redundancy resolution. Redundancy resolution refers to the process

of selecting a joint-space solution from the **P possible jont-space solutions for a

redundant manipulator with p degrees of redundancy.

To represent kinematic redundancy, there are two common approaches - the pseudo-

inverse and the partitioned Jacobian - which axe derived from the "velocity" relationship

fEq. (2.4)) which relates joint-velocity and end-effector velocity. The pseudo-inverse

approach has been presented and discussed extensively in the literature. Therefore, for a

more in-depth treatment of the subject of pseudo-inverse representation, we will refer the

reader to [20] which provides a good review on this topic. The parfitioned-Jacobian

approach is relatively less popular and has only been used in recent years. In Section

5.2.1, we provide a detailed description of the partitioned Jacobian approach. Other
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approaches for representing kinematic redundancy are given in [3,7,35,36,37,42].

However, these approaches are not general and therefore of limited usefulness.

Depending on the way in which kinematic redundancy is resolved, the resulting

approaches for utilizing of the freedom in the joint trajectory are quite different.

Therefore, we will divide the studies in redundant manipulators into three classes -

pseudo-inverse based approaches, partitioned-Jacobian based approaches, and other types

of representations.

A. Pseudo-inverse Approach

Liegeois [23] was one of the first researchers that studied the trajectory planning

problem for redundant manipulators. He developed a formulation, based on the pseudo-

inverse of the Jacobian, to avoid the joint limits. He proposed the following velocity

equation that can be numerically integrated to obtain the joint trajectories q:

=,/+./+ a VH, (3.1)

where ./+ is the pseudo-inverse of the Jacobian and VH is the gradient of a smooth

function H(q) that characterizes a secondary goal such as joint limit avoidance. H(q)

takes the form of:

1_ qi-ai
H(q)-- { }2, (i= 1,2 ..... ,m) (3.2)

af--qiu

where qiu and qiL are the upper and lower limits of qi and a i is given by the following

equation:

ai-(qiu+qiL)/2, (i= 1,2 .... ,m). (3.3)

Yoshikawa [44] presented a similar but more general approach to avoid joint limits,

avoid obstacles and increase the manipulatability 2 (sic) of a manipulator. He also

experimentally verified his algorithm by implementing it on the 7 d.o.f. Ujibot to avoid

2The measure of manipulatability equals zero when a manipulator is at singular state and increases as the
manipulator is moving away from the singular configurations [44].
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an obstacle. However, the obstacle avoidance scheme would only work in an

environment with one obstacle.

Maciejewski [26] proposed an approach for determining the joint trajectories that

avoid moving obstacles. In his approach, if a particular link is close to an obstacle, the

nullspace solution for the joint velocity equation is then utilized to move the link away

from the obstacle based on a desired velocity vector which is normal to the obstacle.

B. Partitioned Jacobian Approach

In this section, we will discuss those trajectory planning approaches that use the

partitioned Jacobian approach. These studies, like those discussed above, do not consider

the actuator constraints nor the dynamics of a manipulator.

Fenton [14] fast introduced the generalized inverse approach which partitions the

Jacobian matrix into two submatriccs - a non-redundant Jacobian matrix Jnr and a

redundant Jacobian matrix Jr" The partitioning of the Jacobian matrix is made possible

by observing the fact that some of the joint variables can be treated as independent free

variables that can be utilized, for example, in optimizing dynamic performance. Chung

et al. [8] applied this approach to minimize the magnitude of the reactions ffansmittcd to

the base of a manipulator (for more details, see Sections 3.3.2); to differentiate this

representation from the pseudo-inverse representation 3, they renamed this approach the

partitioned-Jacobian representation for kinematic redundancy. The approach developed

by Ghosal [I 6] is essentialy the same as the partitioned Jacobian representation.

Other studies that utilize the partitioned-Jacobian representation are discussed in

Section 3.3.2.

C. Other Techniques

In this section, we discuss approaches that are not based either on the pseudo-inverse

matrix or the partitioned-Jacobian approaches.

Sciavicco et al. [37] presented an approach for the inverse kinematic problem of

3Thepseudo-inverseissometimescalledthegeneralizedinverse[20,33].



/

15

i

\

redundant manipulators with joint limits in a workspace containing obstacles. Treating

the inverse kinematic problem as a closed-loop control problem, he was able to generate

the desired joint trajectory for a prescribed end-effector trajectory. The controller gains

of the "closed-loop algorithm" are computed from an appropriate Lyapunov function.

One of the drawbacks of this approach is that the accuracy of the resulting open-loop

end-effector trajectory x d is dependent on the convergence rate of the Lyapunov function.

Seraji [36] developed an approach which augments the forward kinematics with

some task-related kinematic functions. One such kinematic function specifies a desired

arm posture which might be important when the motion is constrained due to workspace

obstacles. The number of forward kinematics equations are augmented by such

kinematic functions until the total number of equations is equal to the number of joint

variables. The joint-space trajectories can then be obtained as in the non-redundant case.

The drawback of this approach is that only a limited number of problems can be solved

due to fact that the user-defined kinematic functions are functions of the manipulator

configuration q only.

Besides the above approaches, many researchers have developed approaches based

on various mathematical techniques such as dynamic programming [42] and graph-search

techniques [3]. However, these approaches are not popular due to large memory

requirements and intensive computational requirements.

3.3.2 Dynamic Performance Optimization

In this section, we review relevant research where trajectory planning is based on

optimizing the dynamic performance of a manipulator. This class of problems differs

from the trajectory planning problems that we discussed in Section 3.3.1 where the

dynamics of the manipulator is not considered in the analysis.

We will fast discuss a study in non-redundant manipulators. In trajectory planning

for non-redundant manipulators, the only freedom one can exploit is in the end-effector

trajectory. Schmitt el al. [38] developed a global approach that determines the optimal

joint trajectory for an unconstrained, open-loop non-redundant manipulator. The

dynamic performance considered in this problem is to minimize the energy consumed

during the execution of a pick-and-place task. Instead of minimizing the energy directly,
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theyposeda minimization problem with a cost function which is a sum of the magnitudes

of the joint torques. In their approach, the Raleigh-Ritz method is used to approximate

the unknown optimal joint motions with a finite number of weighted shape functions.

The necessary conditions for the optimal solutions are then obtained by equating the

partial-derivative of the cost function with respect to each of the weights to zero. The

necessary conditions are then described by a set of non-linear algebraic equations which

can be solved by standard numerical techniques.

In redundant manipulator studies, there have been a few approaches proposed for

exploiting the freedom in the joint trajectory to achieve optimal dynamic performance.

Most of the studies in this area are essentially open-loop. Suh and Hollerbach [18]

proposed a local pseudo-inverse based approach for minimizing the magnitudes of joint

torques. The results of their study show that for most cases their approach produces

acceptable solutions. However, for trajectories where the end-effector velocity is very

high, the local approach produces very high torques. In their later study [40], they

proposed a global approach that optimizes a cost function which is an integral of the

magnitudes of the joint torques. They also compared the solutions of the local approach

and global approach. In their findings, the global approach out-performed the local

approach for all the test cases. But the drawback of the global approach is that the

formulation is very complicated and requires the user to solve a two-point boundary

value problem for a set of fourth order ordinary differential equations. In view of this

difficulty, Hirose and Ma [17] proposed a local approach (based on the partitioned

Jacobian representation) that places limits on the joint accelerations. For most test cases,

this approach is able to overcome the high torque problem encountered by Hollerbach

and Suh. However, the approach does not take actuator constraints into account.

The common theme of all the above redundant manipulator studies is to minimize

the magnitudes of the joint torques. Several other studies were also conducted to exploit

kinematic redundancy in minimizing the magnitude of the base reactions, an important

issue in microgravity robotic operations, deSilva et al. [11] first developed a local

approach to minimize a cost function which is a sum of the weighted magnitudes of the

base force and the base moment. The kinematic redundancy is resolved using the

partitioned Jacobian approach : the joint variables are divided into a vector of redundant
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joint variables qr and a vector of non-redundant joint variables qnr" The joint trajectory is

then broken into a number of segments. For each segment, each joint trajectory is

approximated by a polynomial with unknown coefficients. These coefficients are then

determined by optimizing a static cost function which is a measure of the magnitude of

the base reactions at the end of each time segment. The shortcoming of this local

approach is that it results in a base force which has relatively large peak magnitude.

Quinn and Chen [32] used the local approach developed by deSilva to study manipulators

with up to three degrees of kinematic redundancy. Their results showed that by

incorporating more degrees of kinematic redundancy the base reactions can be further

reduced. Chung and Desa [9] compared the above local approach with a global approach

in which the redundant joint variables are approximated by three segments of third or

fourth order polynomials. The results of their study showed that with a relatively small

number of coefficients, the global approach can reduce the peak magnitude of the base

force observed in the local approach, but is not effective in reducing the magnitude of the

base moment. This is due to the fact that a relatively small number of coefficients are

used to parameterize the overall behavior of the joint trajectory.

It is important to point out that all the above approaches do not take actuator

constraints into account and the dynamic performance optimized is for a manipulator

without feedback control.

3.3.3 Controller Synthesis

We will briefly survey some of the more commonly used techniques for controller

synthesis, point out their drawbacks and finally present an overview of the control

synthesis approach used in this thesis.

One common controller synthesis method which we will call the local linearization

control approach [12] designs a closed-loop control law for a linearized dynamic system

by using linear optimal control theory.

According to this scheme, the control input vector u to the manipulator can be

separated into two parts: the nominal control input vector u* and the (corrective)

feedback control input vector u. The control input u is therefore given by
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u=u* +u. (3.4)

The nominal input vector u* can be obtained from the nominal model of the

manipulator (plant) and the nominal trajectory. There are several studies that address the

problem of obtaining the optimal nominal input vector u* for a manipulator based on a

dynamic performance criteria. This class of problems, usually called the optimal control

problem for a manipulator, is posed as an open-loop, constrained nonlinear optimization

problem.

Bobrow et al. [6] studied the time-optimal control problem of a non-redundant

manipulator with the end-effector trajectory specified in space but not in time. The path

of the manipulator is fast pararneterized in terms of a variable called x (distance along the

path). Then, by imposing the torque constraints, the upper limit and lower limit of the

acceleration J_can be obtained as functions ofx and .f. The optimal acceleration profile is

obtained from the switching curves in the ./- x phase plane. The optimal acceleration

profile is the profile that produces the largest velocity profile possible in the x-./plane.

Once the optimal acceleration profile is obtained, the actual torque profile for each joint

can then be obtained. Independently, Shin and McKay [39] have also developed a

similar algorithm based on the phase-plane concept to solve the minimum-time control

problem for a non-redundant manipulator. The results obtained by Dubowsky and Shin

specify the nominal torque vector u* that can be used to perform a task in a minimum-

time manner for a manipulator. Unfortunately, this approach is quite complicated and

can only solve a small class of problems (such as the minimum-time problem).

The feedback control input u is given, for example, by a state-feedback control law:

u =-gx, (3.5)

where K is the gain matrix and x is the state variable vector of the linearized system

which is obtained by linearizing the nonlinear system about the nominal trajectory [12].

The gain matrix K can be obtained by using classical linear optimal regulator (LQR)

theory [22].

The shortcoming of the local linearization control scheme is that the actuator
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constraints cannot be taken into account directly in the design of a closed-loop controller.

Therefore, the control input vector u obtained by Eq. (3.4) may violate the actuator

constraints. This means that the actuators would not be able to supply the control efforts

which are necessary to obtain the desired performance; as a result the actual performance

could be very unsatisfactory.

The other approach which has also attracted a lot of attention is global feedback

linearization [10] which also partitions the control effort into two parts. One pan of the

control effort is used to "cancel" the nonlinear terms so that the system is "feedback

linearized" and decoupled. The other pan of the control effort is error driven which

ensures tracking in the face of disturbances and modeling errors. The major drawback of

this approach is that since actuator constraints are not explicitly taken into account in the

synthesis of the control law, the control effort computed using the above scheme will in

general violate the actuator constraints resulting in unsatisfactory performance.

Traditional optimal control theory [22] deals either with feedback control strategies

for unconstrained linear systems, as in the classical Linear Optimal Regulator problem, or

with "open-loop" control strategies for constrained nonlinear systems as in the classical

minimum-time control problem. In this thesis we are interested in developing feedback

control strategies for constrained nonlinear systems and therefore we use the extension of

optimal control theory proposed by Beyers and Desa [5]. The first step in this approach

is to define a feedback control law which explicitly and a priori takes actuator constraints

into account. The second step is to obtain the combination of the optimal contoller and

plant parameters that optimizes a user defined performance index through the use of

optimization techniques. Beyers experimentally verified the above synthesis approach by

comparing the simulation results with the actual experimental results for the control of a

two-degree-of-freedom robot manipulator. The experimental results were within 10% of

the simulation results.

Having surveyed the related literature in the area of motion planning for non-

redundant and redundant manipulators, we are ready to present the basic building blocks

and concepts of the unified motion planning approach.
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3.4 Unified Motion Planning Approach

In the previous section, we have seen that many studies in the areas of the kinematics

of non-redundant and redundant manipulators can provide us with useful tools for

trajectory planning. However, using the purely kinematic tools developed in these

studies will not guarantee a trajectory that can be executed by a manipulator without

violating the actuator constraints. The studies in the dynamic performance optimization

area provide us a model-based solution which is non-robust in the face of disturbances

and modeling errors. Very few studies in feedback control system synthesis are for

constrained, feedback-controlled, nonlinear systems. As we have mentioned earlier, both

the local linearization control approach and the global feedback linearization approach

have difficulty in ensuring that the control efforts do not violate the actuator constraints.

As we will demonstrate in Section 3.4.2, the unified motion planning approach

proposed in this study would overcome the drawbacks that we have just mentioned. In

addition, a major advantage of the unified motion planning approach is that it allows us

to simultaneously design the optimal motion and the optimal control law in one single

framework. In this section, the research issues which arise in motion planning are used to

motivate the development of the various building blocks in the unified (motion planning)

approach.

3.4.1 Building Blocks

The building blocks or elements of the motion-planning approach are as follows:

A. Parameterization of the desired end-effector trajectory

B. Parameterization of the desired joint trajectories

C. Closed-loop, constrained controller synthesis

D. Multi-criterion optimization technique.

A. Parameterization of Desired End-Effector Trajectory

Parameterization enables us to convert the dynamic optimization problem of

minimizing the performance index Eqs. (2.6) or (2.7) into a static optimization problem.

In order to pararaeterize the desired end-effector trajectory systematically, it is necessary

to address the following issues:
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¢.
l. The classification of end-effector trajectories for a general task

specification.

2. A simple parameterization approach for different classes of end-effector

trajectories.

In the literature, there is no good way of classifying the end-effector trajectory. In

this study, we classify the end-effector trajectory x into three categories according to the

freedom provided by the task specification. The reason for this classification is that it

allows us to identify the freedom in the end-effector motion and it also facilitates the

development of a simple parameterization scheme. Based on the classification of the

end-effector trajectory, we can identify the independent or free variables that we can use

for parameterization. From the task specifications, we can then determine the boundary

conditions for the free variables. The idea of the parameterization scheme is to represent

the free variables by simple functions which are a sum of weighted shape functions.

Typical shape functions are sin(t), cos(t) or tn, where t is a variable and n is any integer;

the weights serve to parameterize the function. The end-effector trajectory parameter

vector Pe is a vector of the parameters, or weights, which charaterize the functions used

to represent the free variables. By varying Pc, one can describe a large class of end-

effector trajectories that satisfy the task specifications.

B. Parameterization of the desired joint trajectories.

As we have mentioned earlier, there are two common approaches for representing

the kinematic redundancy of a redundant manipulator, namely the pseudo-inverse

approach and the partitioned Jacobian approach. However, in the literature, there are

very few approaches that address the pararneterization of the joint trajectory which is an

important issue in motion planning for redundant manipulators. In this study, we have

developed a simple pararneterization approach for describing the infinite number of joint

trajectories that achieve a specified or parameterized end-effector trajectory. The steps in

the joint trajectory parameterization approach, discussed in detail in Section 5.3, can be

summarized as follows:

1. Based on a kinematic redundancy resolution scheme such as the pseudo-

inverse approach, identify the independent variables which can be used to
characterize the freedom in the joint trajectory.
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2. Then, determine the boundary conditions for these free variables that would

satisfy the task specifications.

3. Parameterize each free variable using a function which satisfies the

boundary conditions. The joint trajectory parameter vector Pj is the vector

of the parameters or weights used to describe all the free variables. Pj can
be varied to describe a large class of joint trajectories that accomplish the
desired end-effector motion.

C. Closed-Loop, Constrained Controller Synthesis

The closed-loop controller synthesis approach proposed by Beyer and Desa [5] for

constrained non-linear systems will be incorporated in the unified motion planning

methodology. We extend their simultaneous plant-controller design concept to motion

planning problems where the trajectory and the controller will be designed in a single

framework. We call this concept simultaneous trajectory-controller design. The

feedback control law is developed in two steps:

Step 1: Define an input u' in accordance with an appropriate feedback control strategy:

where

P

u -G(y(t),r(t),Pc,t) (3.6)

G(.) denotes the feedback control strategy selected by the analyst,

y(t)= (_), is the state vector of the system in joint space,

rft)(qd- qd, isthe desiredjointspace trajectoryvector,and)

Pc isa vectorof parameters or "gains"used torepresent
the controller.

Step 2: Since the magnitude of the actual control effort u cannot exceed the actuator

constraints urea x, the closed-loop control strategy is modified as follows in order to

satisfy the actuator constraints:

u(t)= iflu'l< Ureax (3.7)

ureax sgn(u') iflu'l> ureax
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Note that the control law Eq. (3.7) is a fe_back control strategy which generates a

control input u that cannot exceed the actuator constraints Ureax.

The unknown controller parameter (gain) vector Pc of the modified control strategy,

the end-effector trajectory parameter vector Pv and the joint trajectory parameter vector

P/ are obtained simultaneously by posing and solving an appropriate multi-criterion

optimization problem with actuator constraints. One can see that by simultaneously

planning the optimal trajectory and determining the optimal control law, we arc able to

obtain (i) an optimal manipulator motion that, because it is feedback-controlled, is robust

in the face of disturbances and modeling errors and (ii) an optimal control strategy for

which the control efforts do not violate the actuator constraints. In other words, by using

the unified motion planning approach, we can overcome the shortcomings of the

conventional approaches.

D. Multi-Criterion Optimization Technique

Multi-criterion optimization plays an important role in our motion planning

framework. Using an appropriate multi-criterion optimization technique, we are able to

consider the trade-offs between tracking performance and any additional measure of

dynamic performance such as the magnitude of the base reactions or total task time.

Before we introduce the technique that we use, a few words on the differences

between a single-criterion optimization problem and a multi-criterion optimization

problem are in order.

A multi-criterion optimization problem can be simply stated as follow:

minimize I(P),

subject to:
g(P) >0
h(P) = O.

where P is a vector which consists of the decision parameters (or parameters to be

optimized) and I is a vector of peformance indexes. In the motion planning problem, the

optimization parameter vector P consists of the parameters that represent the freedom

both in the trajectory (Pc and Pj ) and the controller (Pc)"
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In the multi-criterion optimization area, the word "minimize" is used in a different

sense. In a single criterion optimization problem, an optimal solution gives us the

minimum cost function and is, in general, unique. However, in multi-criterion

optimization problems, the optimal solution is usually a set. Only in situations where the

performance indexes are non-conflicting can one obtain a unique optimal solution. For

example, for the two non-conflicting performance indexes I 1 and 12 shown in Fig. 3.1, the

hatched area represents all possible values of I(P) = [I 1 (P) 12(p)]T. The solution

corresponding to point P is clearly the unique minimum solution.

P

Fig. 3.1

I 1

Non-Conflicting Performance Indexes

For conflicting performance indexes, one has to choose an optimal solution from a

set comprising an infinite number of optimal solutions. To illustrate this point, consider

the space of the objective function vector I(P) e R 2 shown in Fig. 3.2. The hatched area

represents all the possible values of I(P). One can see that the optimal solutions

obviously lie on the heavy line AB. To describe all the possible optimal solutions as

shown in Fig. 3.2, we will make use of the term Pareto optimal which is defined by

Osyczka [29] :

An optimal solution P* is Pareto optimal if for every P _ Pseasibte, there is at least

one element of I, I i such that
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I2

Fig. 3.2

Pareto Optimal

11

An Illustration of Pareto Optimal Solutions.

i/p)>li(p* ). (3.8)

(

where Pfeasible denotes all the feasible parameter vectors.

To illustrate this concept, we will compare two Pareto optimal solutions denoted by

points A and B in Fig. 3.2. Let's first consider the optimal solution given by point A.

Obviously, to decrease I2, we can always pick the solution corresponding to point B.

However, the solution given by point B will increase I 1. Similar arguments can also be

applied to point B. One can see that all the points lying on the heavy line represent a set

of optimal solutions called the Pareto optimal or non-inferior solutions. The term

non-inferior solution reflects the fact that a Pareto optimal solution is one that cannot be

improved without worsening at least one of the cost functions, I I or 12.

In multi-criterion optimization, one always has to select a solution from the set of

Pareto optimal solutions by carefully considering the trade-offs involved. There are

various schemes that allow one to select an optimal solution from the set of Pareto-

optimal solutions. Among some of the popular approaches are:

1. the trade-off method;

2. the weighting objective methods;
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3. the goal programming method;

4. the min-max approach.

In our motion planning approach the performance index 11 will be related to tracking

performance while the performance index I 3 will be a measure of some additional

dynamic performance. Since we have some knowledge of the maximum allowable

magnitude of the tracking performance index 11 , the approach that we adopt in the unified

motion planning problem is the trade-off approach which minimizes the performance

index 12 and treats the performance index 11 as an inequality constraint; an example of the

trade-off approach is given in Appendix A. Using the trade-off approach, we can then

pose the following constrained optimization problem:

minimize 12

subject to

11 < Y,

where T is the maximum allowable tracking error.

(3.9)

By solving the above constrained optimization problem, we can obtain the optimal

solution, P* for the parameter vector P which yields the optimal control strategy and the

optimal joint trajectory.

3.4.2 Overview of the Unified Motion Planning Approach

In this section, we will give an overview of the unified motion planning approach.

The motion planning approach is depicted in the block diagram shown in Fig. 3.3.

In this diagram, the inputs provided by the user are indicated by thick arrows. The

inputs consists of the following:

1. the task specifications,

2. the maximum allowable tracking error y,

3. an additional measure of dynamic performance,

4. initial guess p0 of the optimization parameter vector P.

The unified motion planning approach can be divided into two key components, the

motion planning simulator and the optimization module. We will first explain the basic

operation of the motion planning simulator.
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Based on the task specifications, the end-effector trajectory parameterization block

(see Fig. 3.3) characterizes any available freedom in the task _¢ications by

polynomial functions with unknown coefficients. The elements of the end-effector

trajectory vector Pe are the unknown coefficients of the polynomial functions. As we

have discussed earlier these functions describe a desired end-effector trajectory x d that

satisfies the task specifications. From these polynomials, one can then determine the

desired end-effector velocity :/d which is needed to compute the desired joint velocity qd"

The next block in the motion planning simulator is the joint trajectory

parameterization block. As described in Section 3.4.1, one can obtain the desired joint

velocity qd from ;rd using the velocity relationship, Eq. (2.5). For a non-redundant

manipulator, one would obtain a unique desired joint velocity qd corresponding to xd" In

the case of a redundant manipulator, the desired joint velocity qd is described by

polynomial functions whose unknown coefficients are elements of the joint trajectory

parameter Pj. One can integrate the desired joint velocity qd to obtain the desired joint

trajectory vector qd"

The next module is the control system design module, characterized by the controller

p_ameter vector Pc" The control strategy requires comparison of the actual joint

trajectory q to the desired joint trajectory qd and the actual joint velocity q to the desired

joint velocity qd" Based on a control strategy specified by the analyst which is embedded

in controller structure (3.7), the control system design module generates the actuator

effort u which does not violate the actuator conswaints u_u.. The control effort u is the

input to the equations of motion. The joint acceleration/_ can then be obtained directly

from the equations of motion. To obtain q and q, one can simply integrate _. Based on

the actual joint trajectory (q, q, i_), one can then compute the performance index vector I

(Eq.(2.6)or (2.7)).

As shown in Fig. 3.3, the outputs of the motion planning simulator are the values of

I(P) for a given optimization parameter vector P.

The second component of the unified motion planning approach is the optimization

module which determines the optimal solution P* for the parameter vector P. As shown

in Fig. 3.3, the inputs to the optimization module are the initial guesses po of P and the

_.- ,_-_

m
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maximum allowable tracking error y. The optimizationmodule contains a standard

optimization technique for solving constrained,multi-criterionoptimization problems

based on the trade-offapproach. The optimizationmodule converts a multi-criterion

objectiveoptimizationproblem intoa constrainedsinglecriterionoptimizationproblem

and determines a Parcto optimal solutionP* which satisfiesthe trackingperformance (]1

< y) and simultaneouslyminimizes the additionaldynamic performance index I2. The

output of the optimizationmodule P* contains the optimal desiredmotion characterized

by Pe and P./and theoptimal controlstrategygainswhich are elements of Pc"

To implement the resultsof the motion planning on the actual manipulator, one

would generate the referencetrajectoryfor a feedback controlstrategyfrom the optimal

parameter vectors Pe* and P;. The optimal controller parameter vector Pc* is then used

in the feedback control swategy given by Eq. (3.7) to generate the control effort u to drive

the actuators.

The software (programming) environment MATRIXx TM was used to implement the

unified motion planning approach for the following reasons:

le

.

3.

Itallows the user to perform simulationsthrough convenient,user-def'med,

modular buildingblocks.

It contains a powerful optimization module.

The simulation module and the optimizationcan be linked to each other

very easily,a requirement which iscrucialto the realizationof our motion

planning approach.

- *j

In the next two chapters we will apply the unified motion planning approach to

planning motions for both non-redundant and redundant manipulators.
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Chapter 4

Motion Planning of Non-redundant Manipulators

4.1 Introduction

In this chapter, we will illuswate how one can use the motion planning approach to

simulumcously plan the trajectory and design a feedback control law for a non-redundant

manipulator such that actuator constraints arc not violated. In Section 4.2, we introduce

the concepts of a feasible motion plan and an optimal motion plan for a manipulator. In

Section 4.3,we enumerate three types of taskspecificationsand alsopresentmethods to

parameteriz¢the freedom availablein each typeof taskspecification.In Section 4.4,we

discussthe applicationof our unifiedapproach forplanning motions for non-redundant

manipulators. Finally,in Section4.5 wc illustramtheapplicationof the motion planning

approach toplanning feedback-controlledminimum-time trajectoriesfora non-_dundant

2 d.o.f,planarmanipulator.

4.2 Feasible Motion Plan and Optimal Motion Plan

Using the motion planning approach proposed in this study, one can plan two types

of motions - a feasible motion and the optimal motion. The purpose of this section is to

formally define these motions.

In non-redundant manipulator motion planning, depending on the task specifications

one may or may not be able to exploit the freedom in the end-effector trajectory. For

those tasks that do not allow any freedom in the end-effector trajectory, it is imtxnumt to

find out whether the specified trajectory can be achieved by a control strategy under

actuator constraints. If this is possible, then we say the trajectory is a feasible trajectory

for the task specifications.
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For those tasks that do allow freedom in the end-effector trajectory, in addition to

determining whether the trajectory is feasible, we can also ask the question: Can we find

a feasible trajectory that improves the dynamic performance of a non-redundant

manipulator? The trajectory that satisfies the task specifications and also optimizes an

additional measure of dynamic performance is called an optimal trajectory for the task.

As an example, in applications such as arc-welding, a feasible trajectory would be an

end-effector trajectory that can be tracked by a feedback-controlled manipulator without

violating actuator constraints. If, in addition, we also want to execute the task in the

shortest possible time, then an optimal trajectory would be a feasible trajectory that

accomplishes the task in minimum task time.

As stated in Chapter 2, we require a motion plan which

(i) satisfies the task specifications;

(ii) is robust. (i.e. achieved by a feedback control strategy);

(iii) does not violate actuator constraints;

(iv) optimizes an additional measure of dynamic performance.

Let .rd and :r be the desired end-effector n'ajectory vector and actual end-effector

trajectory vector, respectively.

error vector x e by

We can then define the end-effector trajectory tracking

xe=x-x 4. (4.1)

In ordertomeet thefirstthreemotion requirementswe willdef'mea performanceindex

11

/_=_xtx.(Ot. (4.2)

where bre(t)l is the magnitude of the tracking error of the end-effector at time t. Let y

denote the maximum allowable tracking error for the task, i.e.

max Ixt(t)l < y. (4.3)

In order to meet the fottrthmotion requirementwe willdef'me an additional

performance index 12 which is a measure of the additional dynamic performance.
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We now define two terms which play an important role in the development of our

motion planning fi'amcwork.

Feasible Motion: A manipulator motion that satisfies the first three requirements

above and in addition satisfies Eq. (4.3) is called a feasible motion.

Optimal Motion: An optimal motion is a feasible motion that minimizes an

additional dynamic imrformance index I2.

4.3 Task Specifications

In pick-and-place processes, the end-effector is required to move an object from

point A to point B. In this type of ol_ration, we are only confined with whether the

end-effector reaches point B in a reasonable amount of time. Therefore, we have the

freedom to select any end-effector trajectory between end-points that would give us good

performance. However, in some other applications such as arc-welding, the end-effector

has to track a prescribed end-effector trajectory which is either (1) only specified

spatially or (2) completely specified. In the former ease, since the trajectory is only

specified spatially, we can utilize the freedom available in time to optimize a secondary

dynamic performance criterion. In the baer case, the task specification of the end-

effector trajectory does not provide any freedom for one to exploit.

In general, the task specifications of a manipulator can be classified into three

categories:

• Type I Trajectory : End-effector trajectory specified in space and in time, i.e.
x(t) is known.

• Type II Trajectory : Trajectory specified in space but not in time.

• Type III Trajectory : Only the end points of the end-cffector trajectory are
specifed.

For tasksof type I,no freedom is availableforthe end-effectortrajectory.The

motion planningproblem isto determinewhetherthespecifiedtrajectoryisfeasibleor

not. However, fortasksof typesIIand 111,one can take advantageof the freedom

availablein the end-effectortrajectoryto determineeithera feasibletrajectoryor an

optimal trajectory.

"L
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4.3.1 Type H Specification

In a type II task specification, the end-effector is required to Irack a Wajectory

specifiedin space. The desiredend-effectortrajectorycan be specifiedinspace by

xaffixd(a),am_ _ a _ area_ (4.4)

where vt is a variable which is a function of the time t. In some applications,itis

convenient to choose a as the arclengthof thecurve that describesthe trajectory.

The use of a parametric descriptionto describe a curve in space is common in

manufacturing and computer graphics [13]. In roboticapplications,Bobrow el al.[6]

used the above descriptiontoparametcrizcthepath of thecnd-cffectorintheirminimum-

time studies.

By differentiatingEq. (4.4)with respectto time,one can obtainthe desiredvelocity

of the end-effector

. 0 .

Xd=X#(c_)a., (4.5)

where

. dxd
xa (a) =_-. (4.6)

Let _,be the variablethatrepresentsthe totaltasktime. Since the end-effectorisat

rest at the initial and at the final position, we impose the following boundary conditions

on xd(t):

x <0)=,jg---0. (4.7>

Ifwe set 640) = @.(_,)- O,then from E,q.(4.5)we see thatthe boundary conditions

given by Eq. (4.7)will be satisfied.By differentiatingF..q.(4.7),we can obtain the

accelerationof the end-effectortrajectoryas :

_#=xa (a)dc +xa(a)iz, (4.8)

where

x a (a)=_-_ 2. (4.9)
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In addidon to the velocity boundary conditions, the acceleration of the end-effector

must also be zero at t=-O and t--_f, i.e.,

(4.1o)

If we let 8(0)= ti(tt)=0 and _(0 -)=RCtf)=0, then from Eq. (4.8) we see that the zero

acceleration requirements at the end-points are satisfied. Hence, the appropriate

boundary conditions that ct(O has to satisfy are

iX(t/,) -- Otmax

a(o)=a(9)=o

(4.11) "

The variable or(t) can be paramcterized in a simple fashion using a polynomial of

order ! as follows:

!

otCt)=_ aitt, (4.12)

J

where a t (i=O .... , /) are the parameters or weights in the representation. In order to

satisfy the six boundary conditions (4.11), the coefficients a o, a v a 2, @-2, al.l, al must

satisfy the following equations:

i-3

(otma,t-..otmin) (l 2-/) + _ (2il-i-12+l-i2)a i tfi

ai_ 2 = 2¢ 2

t-3

-(aeu_--Rmi a) I(/-2)+ _ [l(l-2)+i(i+2-21)]a_t]

al_ 1 --

J-3

a l = 2t/ "
(4.13)

The remaining variablesa3,a#.... al.3 are the free variableschat one can use to

describe a class of end-effectortrajectoriesthatsatisfythe boundary conditions(4.1I).
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<. Let Pt denote the vector whose elements are the free variables a 3, ..., at. 3 and the total

task time tf, i.e.,

[ (4.14)

4.3.2 Type HI Specification

Since for a Type HI task specification, only the end-points are specified, we have the

freedom to pick any trajectory between the end-points. A spatial end-effector trajectory

can be representedby three/th-orderpolynomials int:.

!

I

(4.15)

The sixboundary conditionsfora Type Wl trajectorycan be expressed as:

x:o)=xo
xg9)=x#.

 a<o) (4.16)

The order of the polynomial given in Eq. (4.15)must be high enough to satisfythe

boundary conditionsgiven inEq. (4.16)and alsotoprovide enough freedom torepresent

a classof end-effcctortrajectoriesbetween the end-points. Since for each Xdi,(i--1,2,3),

there are six boundary conditionswhich must be satisfied,the order of the polynomial

must be greater than five. If we allow/_ independent variables in the polynomial x_<t),

then the order l ofxa_<t) is equal to k+5. If we choose a_3,a_#,ai5 .... ,aio..D, (i=I_) as

the free variables for the polynomial, x&_t), (i=1,23), we can then define the end-effector

trajectory parameter vector, Pe as

Pe = [a13,a14,...,a1(t_3),...,a33,a34,..,a3(/_3),t/]7".(4.17)

The vector Pc, which has 3(1-5) elements, represents the freedom in the specification

of the end-effector trajectory.
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The boundary conditions imposed on x_'t) resemble those imposed on ¢x(t) (see Eqs.

(4.11) and (4.16)). Therefore a O, 0=3,4 .... ,(1-3)), (i=1,2,3), can be readily computed by

expressions similar to Eq. (4.13).

4.4 Procedure for Obtaining a Feasible Motion

In this section, we derive a procedure for obtaining a feasible trajectory for non-

redundant manipulators.

Step I: Defme task specifications.

In a Type I specification, we command the end-effector to move from point x o to . ,,

point x$ along a prescribed trajectory. The task specifications can be simply stated as:

•,'a(O)=xo

x,,.(O=PO, o<t<_, (4.18)

where f(t)G R 3 is a vector of prescribed functions which represent the end-effector

motion in 3-space.

In a Type II specification, we command the end-effector to move from point x o to

point xf along an end-effector trajectory prescribed in space, x(ct), within the maximum

allowable task time, _. Mathematically, we can express the task specifications by

a(O) _.

a(_)=a,,,,,,

a(to)=a(_)=o

(4.19)

In a Type rrl specification, the end-effector must move from point x o to point x1_

Mathematically, we can express the task specifications by
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(. x o)=xo

9 9. (4.20)

Step 2: Paran_terizc the end-cffector trajectory (for Type 11 and Type III task

specifications only).

(a) Type II Specification

For a Type II trajectory, using the parameterized polynomial function developed in

Section 4.3.1, ct can be expressed by the following expression:

a(t)=f l(t,pe) , (4.21)

where(/is apolynomial given by Eq. (4.12)and Pe isdefinedinEq. (4.14).

Note :The vectorP¢ includes_ as one of the parameters.This enablesus to describe

a class of trajectories that satisfy task specifications and whose task time _ is less than or

equal to the maximum allowable task time, _.

(b )Type Ill Specification

For Type In trajectory, we cam use Eq. (4.15) to obtain a parametric description for

each x_t), i=1,23. Using the parametcrized polynomial functions developed in Section

4.3.2, we can express x&4t) by

xd<O=fz(tj,e), (4.22)

where Pe is defined by E,q.(4.17)and the elements Xdi (i=1,2,3)off2 are given by Eq.

(4.15).

Step 3: Determine the desired joint trajectories, @d- Then, using the velocity
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( relationshipstatedinHaI.(2.4),we can obtainan expressionfor the derivativeof thejoint

trajectoryqd by simply pre-multiplyingthe desiredend-effectorvelocityvector by the

inverseof the Jacobian matrix :

##=j--_a?#. (4.23)

The desiredend-effectorvelocityvectoria isfirstdetermined by differentiatingthe end-

effectortrajectoryxa obtained in Step 2. The expressionfor qd(t)can be numerically

integratedusing standardroutinessuch as the Runge-Kutm method or the Kutta-Merson

method to obtain the desired joint lrajectory vector qa.(t), q# and qd will be used in the

computation of the control inputs u (see Step 4).

Step 4: Obtain thestate-spacedynamic model of the manipulator.

The state vector y of a manipulator is defined as

The equationsof motion of a manipulator[I]can be expressed as

u=M(q)_+V(q,q)+G(q), (4.25)

where

u isthe vectorof torquesappliedatthejoints,

M(.) isthemass matrixof the manipulator,

V(.)isa vectorof nonlinearterms inq and {_,

and G(-)isthe vectorof the terms contributedby gravitational

forcesactingon themanipulator.

The jointaccelerationof the manipulator_ can then be obtained from the dynamic

_:luationsF_.q.(4.25)as

#=M-_(q)(u(t)-V(q,#y-G(q)). (4.26)

(

Defining matricesA and B as follows:
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(
B=M--I(V)

A =B (V(q,q)-G(q)), (4.27)

we can express _ by

O=Afy)+B(y)u. (4.28)

Using Eqs. (4.26)-(4.28),we can write the equations of motion of the dynamic

system as a setof 2m ordinaryfirst-orderdifferentialequations:

y=C(y) + D(y) u(O, (4.29)

where

(4.30)

The above state-space equations (4.29) can be integrated numerically to obtain the

values of the state vector y. The values of y and 3; are useful in computing the

performance index defined in Step 7 below.

Step 5: Formulate the appropriate control strategy

We want to formulate a closed-loop control su-amgy that yields a control effort

vector u which does not violatethe actuatorconstraints,ua_ r. We will develop the

controlstructureI intwo stages:

(Stage I) Define an input u" based on some desired feedback control strategy:

u',:G(.y(t),r(t),Pe,t)

where

G(.) denotes the control strategy,

y(t) is the state vector,

(4.31)

._

IThisstagewas discussedinSection3.4ofChapter3emdisrepeatedhereforconve_ence
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Pc is a vector of parameters used to represent the controller.

(Stage 2) Since the magnitude of the actual input u

constraint Urea x, we modify the strategy defined in stage

controller structure:

cannot exceed the actuator

(I) to yield the following

u(r)= {u' if lu'l<Uma x
Ureax sgn(u') if tu'l > Ureax

(4.32)

By using the controller structure defined in stage 2, we have a closed-loop controller that

satisfies the motion planning requirements (fi) and (iii) as listed in Section 4.2.

(

Step 6: Identify the optimization parameters.

Using the parameterization expressions for the end-effector trajectory x, we can

characterize the motions of a manipulator by a vector P, which is defined as follows:

where Pe is the task-space parameter vector deirmed in Step (2), and Pc is the controller

parameter vector of the control strategy defined in Step (4). P is therefore the vector

whose elements are the parameters which must be optimize_ The elements of P will be

determined by solving the tracking performance problem defined in Step (7). Note that

for a Type I trajectory, P only consists of the elements in Pc.

(

Step 7: Determine the optimization parameter vector P by posing an appropriate

optimization problem.

-o

As we have mentioned earlier, the parameters in P are the optimization parameters

that one can manipulate to obtain a feasible trajectory. To determine these parameters,
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( we must pose an appropriate optimization problem for the tracking performance index,

6.

Before we formulate the optimization problem, we will firstdefine a few key

variables.Let qo and qj.be.,respectively,the joint-spaceconfigurationscorresponding to

the specifiedend-cffectorposition,xo and xj,.Then, the trajectoryspecificationsin the

jointspace fortheType HI specificationare:

q#(O)=qo

qd(_)=q.f

=o. (4.34)

We can alsodefinethejoint-spaceerrorvectoras:

(qe(t))=(qd(t)"q(t))
Ye(O = -qe(t) -##(t)'-q(t))'"

(4.35)

For Type HI specification, to ensure that the end-effector is at the desired final

position, x$ at t-_ we want ye(tf)=O. Thus, the most straight-forward performance index

one can use is in the form:

hw)=q.(9)%(,?+ (4.36)

We can therefore pose the following optimization problem to obtain a feasible trajectory

for a Type HI trajectory:

subjectto the constraints(4.25),(4.32)and IT _ IT'.

(4.37)

(

In above equation w] is the weighting factor for scaling and ensuring dimensional

homogeneity of the two quadratic forms in I 1, _is a variable which defines the final time

when the end-effector reaches x a = xj_ If there is perfect u'acking, then the actual

position,a'(_)=xp _)=O and therefore y¢(r_)=0.
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However, the performance index given in Eq. (4.37) does not ensure good Wacking

performance along the trajectory, a requirement which might be important in the general

case. Therefore, a more suitable performance index (for type L il and HI trajectory)

might be

l_(P)=max Ixet, (4.38)

which minimizes the peak magnitude of the tracking error

With the latter performance index, we can pose the following unconstrained

optimization problem to obtain the optimal P for a feasible motion:

rain 11(P)=maxlxel, (4.39)

(

subject to the constraints (4.25), (4.32) and tf < tf'.

The solution P* to the optimization problem (4.37) or (4.39) yields the feasible trajectory

and the gains for the feedback control sn'ategy.

4.5 Procedure for Obtaining the Optimal Motion

In addition to realizing the primary goal of satisfying the tracking requirements, we

are often interested in using any available freedom in the end-effector trajectory to

improve some additional aspect of a manipulator's dynamic performance (the secondary

goal). In such cases, we have to confider two performance indexes, one of which is a

measure of the maximum tracking error and the other a measure of the additional

dynamic performance of interest. Let I I and 12 be the'tracking performance index and the

secondary dynamic performance index, respectively; !1 is the tracking performance index

defined in Eq. (4.38).

If I(P) - [I 1 I2]T denotes the performance index vector, then we can pose the

following multi-criterion optimization problem for obtaining the optimal motion:

minimize I(P). (4.40)

( subjecttothe constraints(4.25),(4.32)and tf g If'.
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(
The above optimization problem basically states that we want to minimize both I1 and 12

simultaneously. However, as pointed out in Section 3.4, only in situations where 11 and

12 are non-conflicting, can we attain the minimum of 11 and 12 simultaneously. For this

situation, we can simply nfmimize 1_ or I2 to obtain the minimum solution. In other

cases, we have to consider the trade-off between conflicting performance indexes.

In a lot of motion planning problems we can only improve the additional

performance index by sacrificing the a'acking performance. Therefore, to minimize I(P)

effectively, we will use a multi-criterion optimization method called the trade-off

method. In Fig. 4.1, a two-dimensional performance index space is shown. 11 denotes

the tracking performance index which has to be less than or equal to the maximum

allowable tracking error, y.

Let S/be a set which consists of all the feasible motions, i.e. Sfis given by:

sf <_T}. 0.41)

The heavy line FO in Fig. 4.1 represents the set Sp of all the Pareto optimal solutions

that meet the feasible motion requirement. Using the trade-off approach, described in

Section 3.4, we can obtain an optimal motion from Sp by posing the following

constrained single-criterion optimization problem:

m/n /2(/')
subject to

l_(P) <,/.

(4.42)

I

The result of the above optimization problem is shown as point O in Fig. 4.1 which is the

smallest value of performance index 12 under the uacking performance constraint on 11.

The procedure for obtaining an optimal trajectory can be summarized as:

1.Define the maximum allowable tracking error y from the task
specifications. Select an initial guess for the optimization parameter, po.

2. Obtain a feasible motion using the procedure described in Section 4.4. If a
feasible motion is unattainable, modify the task specification or the actuator
constraints in order to obtain a feasible motion.

3. With p0 and Y, solve the nonlinear programming problem stated in Eq.
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Fig. 4.1
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II

Pareto Optimal Solutions Which Satisfy the Feasible
Motion Requirement.

(4.42) and obtain the optimal solution P* for the (optimization parameter
vector) P. Once P* is obtained, the optimal trajectory and associated
feedback-conn-ol law can be readily determined.

4.6 Example: Feedback-Controlled Minimum-Time Motion Planning

In this section, we will use an example to demonstrate the process of obtaining the

minimum timetrajectoryfora non-redundamfe_:Iback-controIledmanipulators.In a lot

of pick and place operations, a manipulator is required to pick up an object and place it

down in the shortest possible amount of time. The problem that we wish to solve can be

stated as follows:

Given theinitialpositionand end positionof theend-effectorfor a non.redundant

manipulator with actuator constraints ureax,obtain an optimal trajectory x(O and the

closed-loop control strategy that will achieve the task specifications in minimum task

time.

The example that we will study is a two d.o.f, planar manipulator shown in Fig. 4.2.

Let l_and m_ denote the length and mass, respectively, of joint i. lci denotes the distance
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Fig. 4.2 A Two Degree-of-Freedom Planar Manipulator.

from the joint-axis of joint i to the center of mass of link i. The central moment of inertia

for an axis perpendicular to the plane of motion of link i is given by 1i. The link

dimensions and the mass properties are shown in Table 4.1. The equations of motion of

this manipulator are given in [1]. The actuator at each joint can deliver a maximum

torque of 0.1 N-re. Therefore, the actuator constraints can be expressed by Urea x = (0.1

o.1)7".

In the following discussion, we will study three cases. The results of these three

cases are tabulated and summarized in Table 4-2. In Case 1, we arbitrarily let task time

= 2.0s. The objective is to see if we can obtain a feasible trajectory that earl be executed

with task time _.=2.0s. In Case 2, we solve the same problem as in Case 1, except the

task time is increased to tff.4.0s. The objective is to examine the effect of the task time on

the tracking performance and required actuator torques. In Case 3, we find the optimal

trajectory that can be executed in minimum-time.
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LinkI Link2

mi[kg] 1.0 1.0

Ii[m] 0.5 0.5

it/[m] 0.25 0.25

Ici[kg-m2] 0.005 0.005

Table 4.1 Link Dimensions and Mass Properties

Case

1

Problem Results Conclusions

Find a feasible trajectory

• t/=2.0s
• (Um,x)l=0.1N-m
(umtx)2=0.1N-m

Find a feasible trajectory

• tffA.Osec
• (urn*x)1=0.1N-m

• (urn,x)2=0.IN-m

Find the minimum.time
trajectory

• t/<4.0s.

• Poor Irackingperformance
• max IXeJ= 0.0075m
see Fig. 4.3 (a,b)

• Trackingperf.
isimproved.

• max txee0.0012m
See Fig. 4.4(a,b).

• max Ixe(t)L-0.003m.
See Fig. 4.5 (a,b).

• Cannot fred a feasible
trajectory.

• By relaxing task time
a feasible trajectory
is found.

• An optimal trajectory

with t/=3.0s is obtained.

Table 4-2 Summary of Results

4.6.1 Case 1 : Finding a Feasible Trajectory with _ 2.0s

For illustration purposes, we will solve the problem in accordance with the procedure

outlined in Section 4.4 for a Type III specification.

Step 1: The task of the non-redundant manipulator is to move from point A (0.3536,

0.3536)(m) to point B (0.5656, 0.5656) (m) with the maximum tracking error less than 7

which is specified as 1% of total distance traversed. The task specifications (Type HI)

are given as follows:
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_=2.0S

X(0)--- (0.3536,0.3536) T

X(_f) = (0.5656,0.5656) T

_-o.oo3_.:_(°)=_(t .)= _(o)=_(_) =o (4.43)

Step 2: Parameterize the end-effector trajectory to satisfy the task specifications

given in Step 1. In order to have enough parameters to represent a large class of end-

effector trajectories, we allow two free variables in each of x I and x 2, i.e. the order of the

polynomial used to represent x I and x 2 is equal to 7. We can then write x 1 and x2 as

/=7

Xl(t)= _ ali ti,
1=7

x2( t) = _ a2i t_.
(4.44)

From above equation, the end-effector trajectory parameter vector Pe is given by :

Pe=[al3 a14 a23 a24] r. (4.45)

Step 3: Obtain the desired joint trajectory using the joint velocity equation (Eq.

(4.23)). The desired end-effector velocity vector can be obtained by differentiating Eq.

(4.44).

Step 4: For simplicity we choose a PD controller for the control strategy u" in Eq.

(4.31) with proportional gain vector, kp, and derivative gain vector, k d, as the unknown

controller gain vectors.

For the PD controller, the controller parameter Pc can be written as

e =rl, kp2 r. (4.46)

The PD control strategy can be embedded in the control structure (4.32). Now, we

have a PD control strategy that satisfies the actuator constraints with the control

strategy parameters given by the elements of Pc in Eq. (4.46).

Note that in this example we have chosen a simple PD controller. For better
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performanceone might need to use a more complicated control strategy. Using the

unified motion planning approach, one can test different control strategies by simply

replacing u" in Eq. (4.32) by a particular control strategy of interest.

Step 5: Based on the dynamic equations of a 2 d.o.f, manipulator given in [1], obtain

the state equations of the system using Eq. (4.29).

Step 6: The optimization parameter vector P, consisting of the end-effector trajectory

parameter Pe and the controller parameter Pc, can be written as

P=[al3 a14 a23 a24 kpl k92 kdl ka.2 IT (4.47)

Step 7: Determine Pc* and Pc*, the optimal solutions for the following tracking

performance optimization problem:

rain I 1 =maxlxe(t)l. (4.48)

The initial guess for P is po _ [0 0 0 0 10 10 10 10] T. After solving the above

optimization problem, the optimal solution was given by P* = [-0.048 -0.0241 0.0746

0.0339 9.9998 10 10.0002 10.0] T. Once P* is obtained, we can then obtain the optimal

trajectory and the optimal PD controller. The results of the simulation are shown in Figs.

4.3-4.6.

The actual end-effector trajectory is shown in Fig. 4.3 (a). In Figs. 4.3 (b), one can

see that the trajectory has a maximum tracking error of 0.0075m which exceeds the

tracking error specification of 0.003m. Therefore, no feasible end-effector trajectory can

be obtained for a total task time of 2.0s. The joint trajectory of the manipulator is shown

in Fig. 4.3. We can see that the trajectories are smooth and have zero velocity at the end

of the task time. As shown in Fig. 4.3(d), the actuator of joint 1 is saturated from 0.25s to

1.0s and from 1.5s to 2.0s. The actuator of joint 2 is also saturated from 1.64s to 1.95s.

The highly saturated torque profiles suggest that with the time constraint that we imposed

on the problem, the tracking performance requirement cannot be satisfied.
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4.6.2 Case 2: Finding a Feasible Trajectory with tf=4.0s.

In this case study, we relax the time constraint by letting _ equal to 4.0s. Using the

same procedure as outlined in Case 1 and the same initial guess po used for Case I, we

obtain the following optimal parameters, P*= [-0.0126 -0.0097 0.0091 0.0039 10.00

10.00 10.00 10.00] T. From Figs. 4.4 (b), one can see that since the maximum tracking

error is O.O012m, there is a considerable improvement in the tracking performance.

Hence, we have obtained a feasible trajectory in 4.0s. The actual end-effector trajectory

is shown in Fig. 4.4 (a) and the corresponding joint trajectories are shown in Fig. 4.4 (c).

In Fig. 4.4 (d), the joint torques for joint I and joint 2 are shown. The joint torques are

not saturated and are well below the actuator constraints. From the torque profiles, we

see that the actuators axe obviously not utilized to their full capacity.

4.6.3 Case 3:Determine the Minimum-Time Trajectory

In this case study, the goal is to obtain the minimum time trajectory using the

optimal motion procedure described in Section 4.5. Since we have obtained a feasible

trajectory in Case 2, we can proceed directly to Step 3 of the optimal motion planning

procedure.

Step 3: From the results of Cases 1 and 2, one can notice the optimal controller

parameters axe almost identical to the initial guesses. This fact was also observed for

other set of initial guesses. Therefore, to reduce the computational load, we dropped2the

controller parameters from the optimization parameters vector P. The optimization

parameter vector P is reduced to Pe which is given by the following equation:

pe=[al3 al 4 a23 a2A _]T. (4.49)

Note that in above equation we include the total task time (f as one of the optimization

parameters.

To obtain the minimum-time trajectory for the manipulator, we can pose the

constrained optimization problem given in Eq. (4.42) with 12- _ and y=0.003m:

2Thispractice is, of course, not valid in general.
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subject to
minimize 12=t f

I 1 < 7=0.003m.

(4.50)

The optimal solution for the parameter vector P is given by P* = Pe = [-0.0078 -0.0053

0.009 0.0044 3.0422] T. The optimal task time is equal to 3.0422s. The simulation results

for the minimum-time trajectory are shown in Fig. 4.5. The actual end-effector trajectory

is shown in Fig. 4.5(a). We can see that there is a slight overshoot at the end of motion.

From Fig. 4.5 (b), we can see that the maximum tracking error is 0.003m which occurs at

the end-point of the trajectory and is equal to the maximum allowable tracking error.

The trade-off between 11 and 12 is shown in Fig. 4.6. From the trade-off curve, one

can see the quantitative trade-off between the tracking performance 11 and the task time

12 for Umax=[0.1 0.1 N-m] T. As is to be expected, the task time can only be improved by

sacrificing the tracking performance.

4.7 Summary

In this chapter, we have developed and applied the unified motion planning approach

for planning the feasible and optimal motions for a non-redundant manipulator.

Using the (feedback-controlled) minimum-time trajectory example, we have shown

how we can use the unified motion planning framework to pose and solve appropriate

optimization problems for obtaining both the feasible and the optimal trajectory. The

framework also provides a tool for the analyst to understand the trade-off between

tracking performance and any other additional performance requirement. In the particular

minimum time problem that we studied, one can understand the trade-off between

tracking performance and the total task time for a constrained manipulator from the trade-

off curve shown in Fig. 4.6. This type of quantitative understanding is necessary in a lot

of robotic motion planning problems.
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Chapter 5

Motion Planning of Redundant Manipulators

5.1 Introduction

The ability of a redundant manipulator to accomplish an additional task has been the

impetus for many redundant manipulator studies. In this chapter, we present a motion

planning framework for a redundant manipulator which exploits the freedom in the joint-

space trajectory and end-effector trajectory in order to optimize dynamic performance.

This chapter is organized as follows. In Section 5.2, we present and compare two

different kinematic redundancy approaches - the partitioned Jacobian approach and the

pseudo-inverse approach - and show why the latter approach is preferred. Then, in

Section 5.3, we present a method of parameterizing the joint-space trajectory based on

the pseudo-inverse approach. In Section 5.4, we will discuss the unified motion planning

approach for redundant manipulators. In Section 5.5, we use the base reactions

minimization problem to demonstrate the effectiveness of the unified approach in

planning feedback-controlled feasible and optimal motions for a 3 d.o.f, manipulator with

one degree of redundancy.

5.2 Redundancy Resolution Approaches

As seen in Chapter 2, a redundant manipulator with m degree-of-freedom (or m

revolute joints) performing a task which requires n degrees of freedom, has p=(m-n)

degrees of redundancy. This means that for a given end-effector position there are an

inf'mite number (**P) of joint-space solutions. Redundancy resolution refers to the process

of selecting a joint-space solution from the **P possible joint-space solutions. Two of the

most commonly used Redundancy Resolution Schemes - the Partitioned Jacobian
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approach and the pseudo-inverse approach- will now be discussed.

5.2.1 Partitioned Jacobian Approach

The basic idea of the Partitioned Jacobian approach is to make use of the observation

that in Eq. (2.4), if J is full rank, then p=rn-n of the joint variables, qi, (i=1,2, .... n), may

be regarded as independent variables. These independent or free joint variables can be

regarded as the elements of an p dimensional redundant joint velocity vector, (ir E R m'n.

The remaining m joint variables can be regarded as the elements of an m-dimensional

non-redundant joint velocity vector, qnr"

By dividing the joint variables into a non-redundant group and a redundant group, q

can therefore be partitioned into:

q-Cq.;),
_'qr I

where qnr _ Rn, is called the non-redundant joint vector and qr (_ Rm'n is called the

redundant joint vector.

We can then partition the Jacobian matrix J into the non-redundant Jacobian matrix

(Jnr) and the redundant Jacobian matrix (Jr) such that the end-effector velocity a?can be

written in the following form:

= Jnr _Inr + Jr #r" (5.2)

From the above equation, we can express the non-redundant joint velocity vector (lnr in

terms of the redundant joint velocity vector Or:

,i,,, = J,,#a ( i - j, O, ). (5.3)

Eq. (5.3) is the basic redundancy resolution formulation for redundant manipulators and

states that for a given end-effector velocity, the derivative of the redundant joint vector

Onr can be expressed as a unique function of the derivative of the redundant joint vector

Or Using the definition of q given in Eq. (5.1), the joint velocity, q, can be written in a

compact form as:
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(5.4)

In Eq. (5.4),the jointvelocityvector isexpressed as a functionof the derivativeof the

redundantjointvectorqr and the end-effectorvelocity_?.

The expression that we have developed in Eq. (5.4) is based on the velocity

relationship. An alternative form can be obtained by using the acceleration relationship.

Taking the time-derivative of Eq. (5.2), the acceleration of the end-effector is given by

= )., 0., + L 0, + J., _., + J, _,. (5.5)

From the above expression, we can then express the non-redundant joint acceleration

vector _lnr in terms of the redundant joint velocity Or and redundant joint acceleration

vector qr:

_l.r = Jnr -1 ( _ - Jr Or - Jnr qnr- Jr _lr ). (5.6)

The non-redundant joint acceleration vector qnr can also be written in the form

_.,=.l.i -_(_-) O-.I,_, ). (5.7)

Using Eq. (5.1) and Eq. (5.6), the joint acceleration vector il can be expressed in a

compact form:

(5.8)

,

One can resolve redundancy using either Eq. (5.4) and (5.8). However, both Eq. (5.4)

and Eq. (5.8) require that the matrix Jnr be inverfible. Since Jn: 1 is not invertible for

so-called singular configurations of a manipulator, one must identify all of these singular

configurations in order to "avoid" them. Identifying all possible singular positions is

extremely difficult if the manipulator has many degrees of redundancy and is even more

so if the manipulator is spatial. Due to this shortcoming, even though the partitioned
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Jacobian approach is conceptually very simple, it is not easy to implement. In the next

section, we will discuss a more convenient approach, the pseudo-inverse approach.

5.2.2 Pseudo-Inverse Approach

One method [18,20,23,26,28] of determining the joint velocity vector q, based on the

pseudo-inverse matrix J+ of the Jacobian matrix J (see Eq. (2.4)), is as follows:

=J+_ + (l-J+J)k (5.9)

where k_ R m is an arbitrary vector, I _ R mxm, J _ R nxm and J+ _ R mxn.

Substitution of the expression for q given by Eq. (5.9) into Eq. (2.4) shows that the

fight-hand-side of Eq. (5.9) is indeed a solution of Eq. (2.4). (Remember that JJ+=l).

Let us interpret the physical meaning of the solution given by Eq. (5.9). The first term,

on the right-hand-side of Eq. (5.9) gives the joint velocity component that would produce

the desired velocity in the task space, i.e. J J+ x = I:/- a?. In Eq. (5.9), (l-J+J) is a

projection matrix that projects any vector k _ R m onto the nullspace N(J) of the Jacobian

matrix, i.e., J(l-J+J)k--O. Since the projection matrix maps any arbitrary k onto the

nullspace N(J), we call the second term the nullspace solution for the joint velocity.

The dimension of the nullspace N(J) is m-r where r is the rank of J. In order for a

manipulator to track a general curve in n space, J must be full rank, i.e. r=n. Therefore

the dimension of the nullspace N(J) is, in general, (m-n).

If we let the ith column of (l-J+J) be _i, (i=l, 2, .... m), Eq. (5.9) can be written as

m

/=1

where ki is the i th element of k. Each vector _i lies in the nullspace N(J) of J.

(5.10)

Since there are m elements in k, one might conclude that there are m independent

variables. However, since the dimension of the nullspace N(J) is m-n, only (m-n) of the

column vectors, _i, (i=1,2, .... n) are linearly independent. If _i, (i=1,2, ..., n) is ordered

such that the first (m-n) vectors, i.e., _i, (i= 1, 2, .... m-n), are linearly independent, then

Eq. (5.10) can be written as
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M--lit

q=J+a?+ _a _/s i= (5.11)

where s i are arbitrary coefficients. Note that in above equation there are only m-n

independent variables si, 0=1,2 .... ,m-n).

If we let • denote an rex(m-n) matrix whose i t/=column is Vi, i=l ..... (m-n) and s

denotes a column vector with elements si, i=1 .... (m-n), we can write Eq. (5.11) as

il=J+ x +c_ s (5.12)

From Eq. (5.12), one can see that for a manipulator with one degree of kinematic

redundancy, q) consists of only one column vector (_ = _1) and one coefficient s 1, due to

the fact that the dimension of the nullspace N(J) is equal to one. Therefore, to represent

the basis for N(J), one can arbitrarily choose a single column vector from the m columns

_i, (i=1,2 .... m-n). We can also see that the scalar s 1 expresses the freedom in the joint

trajectory (for the one degree of kinematic redundancy case).

In a lot of applications, the joint acceleration vector _ is often required in the

computation of the performance index. The joint acceleration i], obtained by taking the

time-derivative of q in Eq. (5.9), is given by the following expression:
b

_=J+Yr+J+Yr + Wk + Wk, (5.13)

where W is (l-J+J). As shown in Appendix C for a 4 d.o.f, planar manipulator, the

computation of _ using Eq. (5.13) can be rather laborious. The difficulty of computing il

arises from the fact that in order to compute the time-derivative of the pseudo-inverse J+,

U+ _ jr (jjT)-I), we have to determine the time-derivative of £/jT) -1 which is not a

trivial task. To get around this problem, in our unified motion planning approach, the

joint acceleration vector is computed from the equations of motion (Eq. (4.28)) instead.

In some studies [18,40], the redundancy is resolved at the acceleration level instead

of at the velocity level. The advantage of this approach is that in applications where _ is

needed in the computation of the pefformanc index, the joint acceleration vector iii can be
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.

obtained directly through the use of the pseudo-inverse of the Jacobian matrix.

Taking the time-derivative of Eq. (2.4), the acceleration of the end-effector trajectory

is obtained as:

_=Jil +,]_'. (5.14)

From Eq. (5.14) the pseudo-inverse solution for ij is then given by

_- j+ (_J #) + (t-J+ J)k. (5.15)

In the above equation, the joint acceleration vector consists of two terms: the first term is

used to maintain the desired acceleration of the end-effector trajectory; the second term is

the nullspace solution for the joint acceleration that expresses the freedom arising from

kinematic redundancy. It is worth noting that the same projection matrix used in Eq.

(5.9) is used to project vector k to the nullspace of the Jacobian matrix. Therefore, the

dimension of the null-space term (the second term in Eq. (5.15)) is still m-n. The joint

acceleration il can be integrated numerically to obtain the joint velocity q and the joint

trajectory q once the initial joint variables and the initial joint velocities are known.

One disadvantage of resolving redundancy at the acceleration level is that in our joint

trajectory parameterization scheme (to be discussed in Section 5.3), it is unclear how one

would impose appropriate boundary conditions on the free variables k to achieve a

desired end-effector motion. However, using the joint velocity equation (Eq. (5.9)) and

the joint acceleration (Eq. (5.13)) derived from the velocity equation, we will be able to

determine the appropriate boundary conditions on k very easily. In the next section, we

will discuss the joint trajectory parameterization scheme based on the joint velocity

expression (Eq. (5.9)).

5.3 Parameterization of Joint Trajectories

In the parameterization of the joint-space trajectories, the joint trajectories q(t),

(O<_t<tf), are represented by polynomial functions with unknown coefficients. With

these functions, we are able to describe a class of joint trajectories that satisfy the task

specifications. Mathematically, we can then express the joint trajectory as
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q(t)-h(t,Pj,x(t)), O<_t_tf, (5.16)

where Pj is the joint trajectory parameter vector, x is a desired end-effector trajectory and

t is the time.

In a Type I specification, x(t) is a vector of prescribed functions, whereas in a Type

II and Type III specification, x(t) is a function of the end-effector trajectory parameter

vector Pc. Hence, for both Type II and III trajectories, we can write:

x(O=l'(t2",). (5.17)

In view of Eqs. (5.16) and (5.17), we observe that for a Type II and a Type In end-

effector trajectory, q(t) is a function of both the end-effector parameter vector Pe and the

joint-space parameter vector Pj.

The fast step of our joint trajectory parameterization scheme is to use the joint

velocity equation given by Eq. (5.9) and parameterize k with some appropriate functions.

To obtain a set of representation functions for k, we ftrst need to determine the suitable

boundary conditions for k. For redundant manipulators, ensuring that the end-effector

trajectory satisfies the boundary conditions is not sufficient because a stationary end-

effector does not necessarily imply that the links are at rest. Therefore, it is also

necessary to ensure the joint trajectory q satisfies the zero boundary conditions, i.e. 4(0)

In view of Eq. (5.9), if

k(t)=0 at t=0 and t=tf. (5.18)

then 4(0) = q(_,) = 0 for _?=0.

Similarly, in view of Eqs. (5.13) and (5.18) and if in addition, we let

/_(t)=0 at t----Oand t=tf, (5.19)

then #(0) = _(_,) = 0 for $'=-J_=0. Therefore, the boundary conditions for k can be

expressed by Eqs. (5.18) and (5.19). To obtain a parameterized expression for k, we can

represent k_.(t), 0=1 ..... m), by the polynomial
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ki(t) =_ ai) _. (5.20)

In order to satisfy the 4m boundary conditions (given by Eqs. (5.18) and (5.19)), the

coefficients aio, all, ai(l.1), and all (i=12 .... ,m) must satisfy the following equations:

aio=ail =0
/-2

ai(l_l)- if l_ 1
I--2

___(l-1-i)ait _
i=2

all - tj1
(5.21)

The remaining variables ai2, ai3 ..... ai(l.2), (i=1,2 ..... m) are the free variables one can use

to represent a class of joint trajectories that satisfy the boundary conditions (Eqs. (5.18)

and (5.19)). Let Pj denote the vector whose elements are the re(l-3) free variables, i.e.

Pj= [a12,a13 ..... al(t_2) .... ,a/2,al3 .... ,at(l_2)]. (5.22)

Pj represents the freedom in the joint trajectory q for a given end-effector trajectory x.

We can take further advantage of kinematic redundancy by treating some of the joint

variables which specify the initial configuration of the manipulator as independent

variables. If a manipulator has (m-n) degrees of redundancy and we let a l, a 2 ..... Orn-n

denote the independent initial configuration parameters then the vector Pj can be defined

as follows:

Pj= [a12 ..... al(/_2) .... , ai2 ..... al(l_2 ), al ..... Crm_n ]. (5.23)

To determine the dependent initial joint variables in terms of the (m-n) independent

initial joint variables for a given end-effector position one must use the so--eaUed Inverse

Kinematic Equations for the manipulator. These equations are given in Appendix D for a

3 d.o.f, and a 4 d.o.f, planar manipulator.
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5.4 Motion Planning for Redundant Manipulators

In chapter 4, we have described a motion planning procedure for obtaining the

feasible trajectory and optimal trajectory for non-redundant manipulators. The procedure

described in Chapter 4 for obtaining the feasible trajectory and optimal trajectory for non-

redundant manipulators can be easily extended to the motion planning problem of

redundant manipulators.

In this section we describe how the procedure described in Section 4.4 for obtaining

the feasible trajectory must be modified in order to handle redundant manipulators. The

procedure for obtaining the optimal trajectory, given in Section 4.5, are directly

applicable to redundant manipulators.

The ftrst two steps for obtaining the feasible trajectory ( in Section 4.4) deal with the

parameterization of the freedom available in the end-effector trajectory. These steps are

the same for the redundant case.

In Step 3, the pseudo-inverse approach is used for redundancy resolution. The joint

velocity qd can then be represented as

ild=J+ Xd+ ( l-J+ J)k.

We represent k by means of the polynomial functions defined by Eq. (5.20) and Eq.

(5.23).

For a manipulator with one degree of redundancy, the dimension of the nullspace

N(J) is equal to 1. We can then use following simpler equation for determining qd:

ild=J+ i_d+_l Sl , (5.24)

where t_l is the first column of the projection man'ix (l-J+J) and s 1 can be represented in

a fashion similar to Eq. (5.20).

Steps 4 and 5 of the procedure, which deal with prescribing the state-space model of

the manipulator and the appropriate control strategy are the same for the redundant case.

For the redundant case, the optimization parameter in Step 6 is defined as follows:
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pf[per pjr pcr]r. (5.25)

where Pe is the end-effector trajectory parameter vector, t'1 is the joint trajectory

parameter vector, and Pc is the controller parameter vector.

Application of Step 7 of the procedure in Section 4.4 to the present problem would

then yield the optimal value of P which in turn yields the feasible trajectory and the

corresponding feedback control strategy.

5.5 Illustrative Example : Base Reaction Minimization

In section 5.4, we have discussed _e unified motion planning approach for

redundant manipulators. In this section, we will demonstrate the procedure for obtaining

a motion plan that optimizes a specified dynamic performance. The problem that we

address is the minimization of the magnitude of the reactions transmitted to the base of a

manipulator used in space.

.,4

x2

f

Fig. 5.1 A 3 d.o.f. Planar Manipulator
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We propose to minimize the magnitude of the base reaction for the 3 d.o.f.

manipulator shown in Fig. 5.I. The mass properties and link dimensions of the

manipulator are given in Table 5- I.

LinkI Link2 Link3

mi[kg] 1.0 0.5 0.5

Ii[m] 0.5 0.25 0.25

Ici[m] 0.25 0.125 0.125

0.005 0.0026 0.0026iI_i_g-m2]

Table 5-1 Mass Properties and Link Dimensions

The task of the 3 d.o.f, redundant manipulator is to track a completely specified

straight-linetrajectorydescribed by a Type I specificationusing a PD controller.The

end-effector trajectory x(t) can be expressed as follows:

where
x(t)=cx(Oe,O< t_<t:,

a(t)=b(t- tf-_-sin(2m)),

z_ tI

b--_ (5.26)

e is a unit vector parallel to the straight-line trajectory and _ is the total time of the task.

The speed v(t) and the acceleration a(O of the end-effector trajectory are given by the

following equations:

v( t) = b(1---cos(_) )

a(t)=rdasin(2m),

t: 9
(5.27)

which ensure zero boundary conditions on the velocity and acceleration of the end-

effector.
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The initial position of the end effector is Xo=(0.35355, 0.35355) T (m). The desired

final position is xl= (0.5664, 0.5664)T(m). The following parameters are used for the

trajectory:

_=2.0s

c_(t)=0.3m
b :fO.15rrds. (5.28)

The tracking error of the end-effector trajectory cannot exceed the maximum allowable

tracking error _/which is chosen to be 1% of the total distance traversed by the end-

effector. Therefore, we can constrain tracking performance index 11 by the following

inequality:

11 < _, (5.29)

where _0.003m. The maximum torque available at each actuator is 0.15N-m.

According to the optimal trajectory framework developed in Section 4.4, we will

fast determine whether a feasible trajectory can be obtained for the given task

specifications. If the task specifications are not feasible, then we change the task

specifications such that a feasible trajectory may be obtained. Once a feasible trajectory

is achieved, then we can proceed to obtain an optimal motion plan by using the procedure

described in Section 4.5.

Based on the above rationale, we will investigate the following two cases:

• Case 1. Finding a feedback-controlled feasible trajectory with urea x --

[0.15,0.15,0.15] T (N-m) which satisfies Eq. (5.29).

• Case 2. Obtaining a feedback- controlled optimal trajectory to minimize the
peak magnitude of the base force.

The results of the above two cases are tabulated in Table 5-2.

5.5.1 Case Study 1: Obtaining a Feasible Trajectory

In this case study, we want to obtain a feasible trajectory under

specifications given by (5.28), (5.29) and the specified actuator constraints.

the task

: Using the procedure outlined in Section 4.6.1, we can obtain the optimal control
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Case

1

2

Problem Results Summary

• Find a feasible trajectory:

rainI_
with

urn,x=[0.15 0.15 0.15]r(N-m).

• Obtain an optimal trajectory
to minimize base force:

min12--Ii
subject to

y=0.003m

• Acceptable tracking performance
is obtained, ll=0.0006m
(seeFig. 5.2 (a,b))
s Actuator torques do not
violate the actuator
constraints.
• peak torque = 0.078N-m.
(seeFig.5.2 (d))

• Peak tracking error=O.OO17m.
(see Fig. 5.3 (b))
s Optimal peak base force=0.29N
(see Fig. 5.3 (c))
• actuator torques are
below Ureax.

• A feasible trajectory
was obtained.

• An optimal trajectory
was obtained that
minimizes the peak
magnitude of base force
by sacrificing the
trackingperformance.

Table 5-2 Summary of Results

I_ IIi

parameter vector Pc and optimal joint trajectory parameter vector Pj for the tracking

performance optimization problem posed in Eq. (4.38) with Umax=[O.15 0.15 0.15] T (N-

m). To ensure that a local minimum solution was not obtained, several initial values of P

were used to obtain P*.

The optimal solution P* was given by: P* = [pj*T pc*T] = [-7.999 3.009 4.003

1.0312 1.0018 0.9985 1.0027 19.999 20.000 20.000] T. The results for this case study are

shown in Figs. 5.2 (a-d).

The actual end-effector trajectory and the tracking errors are shown in Figs. 5.2 (a,b).

From these results, we observe that the maximum tracking error (0.0006m) i| less than

the maximum allowable tracking error (0.003m). Therefore, the trajectory is acceptable

and it is a feasible trajectory. Furthermore, as shown in Fig. 5.2(d), the joint torques are

all below the actuator constraints. This shows that our motion planning framework is

capable of finding a feasible trajectory to satisfy the tracking performance requirement

and the actuator constraints. Also, in Fig. 5.2(c), the joint trajectories are plotted. Note

that the angular displacement ql of the first joint variable is very small relative to the

angular displacement of either the joint variable q2 or q3"
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5.5.2 Case Study 2: Obtaining Minimum Base Reactions Trajectory

Recently, redundant manipulators such as the Oak-Ridge arm, which has seven

degrees of freedom (one degree of kinematic redundancy) have been proposed to be used

in space to provide dexterity and obstacle avoidance ability [21]. In using a manipulator

in microgravity environments, one has to consider the problem of minimizing the

magnitude of the force and the moment exerted by a manipulator on its base as it

performs a task. One reason for minimizing, and ff possible eliminating, the base

reactions is that high base forces and moments could disturb other tasks or experiments in

the vicinity of the manipulator. The problem that we are interested in differs from the

study by Longman, [25], in which the base reactions are compensated (instead of being

minimized) by modifying the desired joint-space trajectories using a special set of

kinematics equations that account for base motion caused by the base reactions.

The task of a redundant manipulator used in space can be divided into a primary goal

and a secondary goal. The primary goal of a manipulator is to accomplish the end-

effector motion specified by the user. While the manipulator tracks the trajectory, base

force and base moment denoted by fo and n o are transmitted to the base. Since there is

freedom in the joint-space trajectory, we can exploit this freedom to accomplish the

secondary goal - reducing the magnitudes of the base reactions. The dynamic equations

which describe the forces and moments transmitted to the base of a manipulator are given

in Appendix B.

In this case study, we will obtain an optimal motion plan that minimizes the

magnitude of the base reactions while satisfying the tracking requirement.

To avoid undesired large magnitudes of base force and base moment, we will use the

following performance index as a measure of the magnitudes of the base reactions:

12--w/.p"W2tm, (5.30)

where w I and w2 are the weighting factors and If and I m are defined as follows:

lm=max (Inol). (5.31)



74

In the above equations, lj. and I m are the peak magnitude of the base forcefo and the peak

magnitude of the base moment n o , respectively. In this example we will study the

problem of minimizing the peak magnitude of the base force. Therefore, the weighting

factors in Eq. (5.30) are wl-l.0 and w2-'-'-_.O.

With the above performance index (Eq. (5.30)), one can then pose and solve the

following optimization problem to obtain the optimal motion plan:

rain 12(P)=I £
subject to:

l l(P) <'t=O.OO3m. (5.32)

The optimal solution P* of the above optimization problem yields the optimal

trajectory and corresponding feedback control strategy. The simulation results are shown

in Fig. 5.3 (a-d).

The actual end-effector trajectory and the magnitude of the tracking error are shown

in Fig. 5.3 (a,b). From these results we observe that the maximum magnitude of the

tracking error is 0.0018m which is larger than that of the feasible trajectory (obtained in

Case 1). The magnitude of the base force of the optimal trajectory and the feasible

trajectory are compared in Fig. 5.3 (c). The dotted line is the magnitude of the base force

of the feasible trajectory and the solid line is the magnitude of the base force of the

optimal trajectory. One can see that the peak magnitude of the base force of the optimal

trajectory is 30% less than that of the feasible trajectory. Furthermore, as shown in Fig.

5.3 (d), the joint torques are all below the actuator constraints. The maximum magnitude

of the actuator torque is O.12N-m.

5.6 Summary

In this chapter we demonstrated the application of the unified approach to planning

motions for non-redundant manipulators. The Pseudo-Inverse Redundancy Resolution

Approach was found to be particular well suited for our motion-planning framework.

Finally we showed how the unified approach could be used to plan feedback-controlled

motions which minimize the magnitude of the reactions transmitted to the base of a

manipulator.
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Chapter 6

Special Topics

6.1 Introduction

In this section, we will discuss some special topics related to motion planning of

manipulators. In Section 6.2, we develop and apply a procedure for evaluating the

effectiveness of kinematic redundancy. In Section 6.3, we examine some of the

implementation issues which are important in motion planning such as sensitivity, local

minima, and the number of parameters needed to parameterize a trajectory.

6.2 Evaluation of Effectiveness of Kinematic Redundancy

We lra'st establish the need for defining suitable compatibility criteria for comparing

the performance of alternative manipulator types. These compatibility criteria form the

basis for a procedure which can be used to systematically evaluate the effectiveness of

kinematic redundancy. The procedure is then applied to show that kinematic redundancy

does in fact minimize base reactions.

6.2.1 Is kinematic redundancy useful in minimizing base reactions?

In the literature, many studies have been conducted to explore the utility of

kinematic redundancy in various applications. In most of these studies, no attempts have

been made to evaluate the effectiveness of using kinematic redundancy to improve the

dynamic performance of a manipulator. In fact, most of these studies are conducted

based on the following scenario: For a given redundant manipulator, find the optimal

joint trajectory that achieves the primary goal of tracking a specified end-effector

trajectory and an additional secondary goal.
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A basic question which must be answered in using redundant manipulator is the

following: Is the addition of redundant degrees-of-freedom to a kinematic structure

really beneficial? As stated before, the advantage of using redundant manipulators lies in

the fact that there are an inf'mite number of joint trajectories for a given end-effector

trajectory. However, one cannot overlook the following trade-offs of adding more

degrees of freedom. The complexity of the trajectory planning problem increases as the

degree of redundancy increases. With additional hardware in the form of links, motors,

and sensors, the overall system complexity and cost are increased. In view of these trade-

offs, there is a need to justify the effectiveness of a redundant manipulator.

In the following example, we will illustrate some of the issues one has to consider

when evaluating the performance of a redundant manipulator.

Assume that we are evaluating the design of a planar 3 d.o.f, manipulator with the

following physical dimensions: 11=12=I3=0.5m and ml=m2=m3=l.0kg. The issue of

interest is whether the use of a 3 d.o.f redundant manipulator (with one degree of

redundancy) is more effective in reducing base reactions than a 2 d.o.f, non-redundant

manipulator. Using the framework we developed in Chapters 4 and 5, we can obtain the

optimal base reaction for the redundant manipulator. But, the following two equivalent

questions would still remain unanswered: (1) Do the optimal base reactions tell us

anything about the effectiveness of using kinematic redundancy in minimizing the

magnitude of the base reactions? (2) If we add a degree of redundancy to a non-redundant

manipulator, will it help reduce the magnitude of the base reactions?

To answer the questions just raised, one might try to compare the performance of

kinematic structures with different degrees of freedom. For the case of the base reaction

minimization problem that we discussed, we would compare a 2 d.o.f, non-redundant

manipulator with a 3 d.o.f redundant manipulator both of which are shown in Fig. 6.1 (for

the non-redundant manipulator, li=12=0.5m and ml=m2= l.0kg).

Assume that both these manipulators must track a prescribed straight-line trajectory.

The open-loop base reaction profiles are shown in Figs. 6.2 (a,b). From the non-

redundant manipulator base reaction profile (Fig. 6.2), we can see that the peak force is

0.52N and the peak moment is at 0.13 N-re. Also, from the redundant manipulator base
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Fig 6.1 Comparison of Incompatible Non-redundant and Redundant Manipulators

reaction profile, we can observe that the peak base force is about 0.4 N and the peak base

moment is around 023 N-re. From these prof'fles, one can see that the peak magnitude of

the base moment of the redundant manipulator is higher than that of the non-redundant

manipulator while the peak magnitude of the base force of the redundant manipulator is

lower than that of the non-redundant manipulator. From these results, it is tempting to

conclude that the manipulator with kinematic redundancy does not reduce the base

moment. Furthermore, in view of the trade-offs associated with using redundant

manipulators, one would probably conclude that the non-redundant manipulator should

be used instead of the redundant manipulator.

The problem with the above comparison lies in the incompatibility of the kinematic

structures that we chose to compare. For example, the redundant manipulator shown in

Fig. 6.1 is much larger and heavier than its non-redundant counterpart. It is obvious that

one can always choose a smaller and lighter non-redundant manipulator for comparison

with a redundant manipulator and conclude wrongly that the use of the kinematic

redundancy is not effective in reducing the base reactions. In order to draw accurate

conclusions it is necessary to have a procedure for evaluating the effectiveness of using
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kinematic redundancy to enhance the dynamic performance of a manipulator.

6.2.2 Compatibility Criteria for Performance Comparison

The two manipulators (kinematic structures) that we choose to compare can be

denoted by K i and Kj where the subscripts i and j refer to the number of degrees of

freedom of the two manipulators. In general, i and j are either greater than or equal to the

dimension of the task space, n.

We will first establish the compatibility criteria. There are three requirements that

we are concerned with: (1) task compatibility; (2) geometric compatibility; (3) mass

compatiblity. The task compatibility requirement demands that the two manipulators

perform the same class of end-effector tasks. The geometrical compatibility guarantees

that the sizes of the kinematic structure and the class of tasks that can be performed by

these two manipulators are the same. The mass compatibility requirement simply ensures

that the weights of the two manipulators are equal.

By task compatibility, we mean that the Task Specifications of the end-effector

trajectory for the two manipulators are the same. For example, if the end-effector

trajectory is of type II (x specified in space but not in time.), then the following equation

has to be true:

[x(a)]Ki = [x(a)]Kj, 0< o_< Ctmax. (6.1)

where a is the arc length of the curve that the end-effector must track. In the above

equation, the function describing arc length for manipulator K i, (¢X(t))Ki, is not necessarily

the same as its counterpart for the manipulator Kj, (a(t))K. f The above criterion enables us

to describe a common task for both manipulators to perform.

To ensure geometrical compatibility, the basic requirement is that the workspaces of

the two manipulators must be the same. If we let W i denote the workspace of K i, then we

can define the elements of W i as a set of points that are inside or on the boundary of W i.

Mathematically, Wi can be expressed as

Wi= {x=(xl,..,xn)Tix=f(q), for qmin <q<qmax}, (6.2)

i
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where f(q) is the forward kinematic equations of K i and qmin and qmax are vectors

denoting joint limits of K i. The ideal geometrical compatibility condition for the two

manipulators is as follows:

If W i equals Wj, then K i is geometrically compatible with Kj.

With this compatibility condition, one can determine quite easily if two manipulators

are geometrically compatible with each other. For example, as shown in Fig. 6.3, K 2 is

obviously geometrically compatible to K 3 as W 2 (the set of points inside and on a circle

of radius 1) is equal to W 3. From this example, one might be tempted to state that the

condition of compatibility implies that the sum of the link lengths of K 2 must be equal to

the sum of the link lengths of K3. However, as shown in Fig. 6.4, we see that the latter

condition is obviously not true. The manipulator shown in Fig. 6.4(a) is not

geometrically compatible to the one shown in Fig. 6.4(b) even though the sum of the link

lengths for both manipulators are the same. (The workspace W 3 has a "hole" in the center

which is absent in W2.) In general, for planar manipulators, it is possible to obtain two

geometrically compatible manipulators by inspection. However, for spatial mechanisms,

one may have to resort to computer-aided software to find two compatible kinematic

structures. If one cannot find two perfectly compatible kinematic structures, then the

next best would be for them to be almost compatible. In many problems, the two

manipulators shown in Fig. 6.4. may be considered to be sufficiently compatible for all

practical purposes if the radius of the "hole" in the center of W 3 is small compared to the

outer radius of W 3.

The third compatiblity condition, mass compatibility, can be obtained by imposing

constraints on the total masses of the two manipulators. This condition can be simply

stated as

• !

(_mi)Kj--'_lmi)Kt. (6.3)

In applications in space, this mass equality constraint is crucial as there is always a

constraint on the total permissible weight of a payload.

Using the above compatibility conditions we can develop a general procedure for
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evaluating the use of kinematic redundancy in enhancing the dynamic performance. This

procedure is developed with the following scenario in mind:

An engineer has a manipulator design in mind. He would like to determine whether
the addition of a single degree of freedom to his current design will improve the
dynamic performance of the existing manipulator.

The procedure can be stated as follows:

1. Based on the current design (.Kj), compute the workspace Wj and the total

mass (roT) j of the manipulator/_j.

2. Based on the workspace of K, obtain a set of link lengths of the

manipulator Kj+ 1 that would satisfy Wj = Wj+I.

3. From the mass compatibility conditions (T_.q. (6.3)) obtain a set of masses

(m i, i=1 .... , j+ l) for manipulator Kj+ 1.

4. Define the type of tasks for Kj and Kj+ I based on the task compatibility
criterion.

5. Compute the optimal joint trajectories for K. and K. to optimize some5.2. j+l
desired performance criterion (or criteria). Then, obtain the values of the

performance indexes for Kj and Kj+ 1, respectively. Comparison of the

performance indexes for Kj -with those for Kj+ I could then be used as a fair
basis for evaluating the effectiveness of adding a degree of redundancy to

Kj.

6.2.3 Illustrative Example

In the base reaction minimization problem studied in Chapter 5, we obtained the

optimal joint trajectory for a redundant manipulator. In that study, we used the freedom

in the joint motion to minimize the base reactions of a redundant manipulator. We did

not really question the effectiveness of kinematic redundancy in minimizing the base

reactions. In the following example, we wiU illustrate the use of the above procedure to

systematically examine the issue of whether kinematic redundancy improves or degrades

dynamic performance.

To examine this issue, we will first assume that we have an exisiting non-redundant

manipulator to accomplish the prescribed task as shown in Fig. 6.6(a). The non-

redundant manipulator K 2 is a 2 d.o.f manipulator with link length of 0.5m and mass of

0.5kg for each link. The center of mass for each link is assumed to be at the middle of the

link. The moment of inertia for link i is assumed to be a function of the mass m i and the
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link length Ii of link i. We wish to examine the improvement one would get by having an

additional degree of freedom. The following steps correspond to the procedure described

in Section 6.2.2.

(1) Following the procedure outlined in Section 6.2.2, we will first compute the

workspace, W 2. For a planar non-redundant manipulator with equal link lengths, the

workspace is a complete circle with radius of l.Om. The total mass of the manipulator is

2.0 kg.

(2) Next, from the workspace constraint, W2=W3, the total length of K 2 must be

equal to 1.Om:

,_=li = 1.Om. (6.4)

For a planar 3 d.o.L manipulator with a voidless workspace, the following conditions

must be true :

ll <12+l 3. (6.5)

To satisfy the above two equations, one can select a specific 3 d.o.f, redundant kinematic

structure from an infinite number of possible kinematic structures. To simplify matter,

we let 12=13=0.25m; lI is then equal to 0.Sm. Now, we have computed the geometrical

parameters for the 3 d.o.f, manipulator, K 3 which is compatible with K 2.

(3) We know the total mass is equal to 2.0kg. Assuming that the cross-sectional area

and material of each link is the same and neglecting the actuator mass, the mass of each

link is proportional to its length, ml=l.0kg, m2=m3=O.Skg.

(4) The task of the end-effector of K 2 and K 3 is the same as the straight line task of

the example in Chapter 5.

(5) Using the open-loop analysis, we can obtain the optimal base reactions profile of

the 3 d.o.f, redundant manipulator (K 3) with the rink lengths and link masses computed in

Steps (2) and (3).

Repeating Steps (1-5), we can also find a compatible 4 d.o.f, planar manipulator with
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2 degreesof kinematicredundancy.In Fig. 6.6(b,c), we show the base reaction profiles

of the 2 d.o.f., 3 d.o.f., and 4 d.o.f, planar manipulators (as depicted in Fig. 6.6 (a))

performing the same straight-line task from point A to B. The peak magnitude of the base

force of the 3 d.o.f, manipulator is 0.3N, about 40% less than that of the 2 d.o.f.

manipulator. The peak magnitude of the base moment of the 3 d.o.f, manipulator is

O.12N-m, about 23% less than that of the 2 d.o.f, manipulator. For the 4 d.o.f, planar

manipulator, we see drastic reduction in the magnitudes of the base reactions. The peak

magnitude of the base force for the 4 d.o.f, redundant manipulator is only 20% of the

peak magnitude of the non-redundant manipulator while the peak magnitude of the base

moment is 36% of the peak magnitude of the non-redundant manipulator. One can also

note that the base reactions of the 3 d.o.f, and 4 d.o.f, manipulators at the beginning and

the end portions of the trajectory are of the same magnitude. From 0.3s to 1.9s, the base

reactions of the 4 d.o.f, planar manipulator is significantly smaller than that of the 3

d.o.f, manipulator, but more oscillatory. From these results, one can conclude that by

increasing the degree of kinematic redundancy, the base reactions can be reduced quite

drastically.

6.3 Some Implementation Issues in Motion Planning

In the implementation and application of the unified motion planning, the following

questions naturally arise:

1. How many parameters should be used to represent the joint trajectories?

2. To what parameters is the performance index most sensitive?

3. What is the "landscape" of the optimization problem in the optimization

parameter space?

These questions will be addressed in the following subsections.

6.3.1 Appropriate Number of Parameters

In using the parameterization scheme developed in Chapters 4 and 5, one has to

determine the number of parameters used in the parameterization of the independent

variables. We will examine this important topic in the context of the base reaction

minimization problem studied in Chapter 5.

In the base reaction minimization problem, the optimal joint motion was obtained by
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using three independent parameters to represent the joint trajectory. The logical question

one can ask is the following: What is the minimum number of parameters necessary to

represent the optimal joint motion? The answer to this problem is problem dependent. In

order to gain some insight into the answer to this question, one must increase the number

of parameters used in the representation scheme and determine whether the resulting

solution is better.

To study this issue for the base reaction minimization problem, we compared the

results of a three parameter representation scheme versus a six parameter scheme

representation. The results of the two schemes shown in Figs. 6.6 (a,b) are almost

identical which strongly indicates that three parameters are sufficient for obtaining an

optimal solution (in this case).

6.3.2 Sensitivity

In this section, we examine the sensitivity of the base reactions with respect to the

joint trajectory parameters (Pj) for the base reaction minimization problem (of the 3 d.o.f.

planar manipulator) examined in Chapter 5.

The parameters of the joint trajectory are denoted by vector Pj which consists of the

parameters used in the joint-space trajectory parameterization and the initial joint

configuration parameter o. In this example, we will use a polynomial of sixth order to

represent the scalar s 1 of Eq. (5.24). The independent variables in the representation of s1

are a], a 2, and a3;also one is free to choose a. Two possible candidates for ¢_ are the

orientation of the end-effector (a = ql(O) + q2(O) + q3(O)) and the joint variable of the

first link (o = ql(0)). In our analysis, we choose the orientation of the end-effector, a =

q](O) + q2(O) + q3(O), as an independent variable.

In vector form, we can express the parameter vector Pj as:

pj-[a 1 a 2 a 3 a] r. (6.6)

To determine the sensitivity of a performance index I with respect to the parameters,
8/

we perturb the optimization parameters and compute the sensitivity coefficients at,_----_

which can be numerically approximated by the following equation:
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(6.7)

where pj(k) denotes the k th element of Pj and l .represents the order of the polynomial used

in representing s 1.

Using the above equation, we will examine the performance index 12 that we used in

the base reaction minimization problem of chapter 5. The sensitivity analysis is

performed at the optimal solution P/* = [0.974 0.6632 0.3128 -1.0]. Using Eq. (6.7), we

obtain the following sensitivities for 12 with respect to the optimization parameters:

_/2 =0.02

3a 1

12=0.02

3a 2

12_-0.01

3a 3

/2-0.39"
3a

From the above sensitivities, we see that the initial joint configuration parameter o is the

most sensitive parameter. In general, it is useful to obtain sensitivities when solving an

optimization problem since these sensitivities tell us about the behavior of the function in

the vicinity of a solution and are also useful in identifying the critical parameters.

6.3.3 Landscape of the Optimization Problem

The purpose of this subsection is to give some insight into the "landscape" of the

optimization problem. The term landscape refers to the graph of the performance index

versus the most sensitive parameters in the optimization problem. We will use the base

reaction minimization example to illustrate the process of determining the landscape of

the problem.

To generate the landscape for the base reactions, we will investigate the following

two cases:
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1. Minimizing peak base force using If = max/fo/.

2. Minimizing peak base moment using Im = max/no/.

The profilesof the optimal peak base force and optimal peak base moment arc

plottedas functionsof the orientationof the manipulatorin Fig.6.7.From thisfigureone

can note that the minimization of the base force is somewhat correlated to thc

minimization of the base moment. The valleysof thelocallyoptimal peak base forceand

the locallyoptimal peak base moment correspond to approximately the same orientation

angles. This shows thatwhen one minimizes peak base force,the peak base moment is

alsosimultaneouslyminimized.

3

Fig. 6.7 Landscapes of Performance Indexes

Furthermore, from Fig. 6.7,we can investigatethe trade-offsone has to consider

when optimizing the base reactions.Ifone wants to minimize only the magnitude of the

base moment wc would want to obtain the solutioncorresponding toB in Fig. 6.7. For

minimum value of peak base force,one would liketo obtain the solutioncorresponding

to pointA inFig.6.7.

As mentioned earlier, one of the trade-offs in employing extra degrees of freedom is

that the optimal trajectory may not be attainable. To illustrate this point, the optimal If is

plotted as a function of the initial orientation angle ¢3 of the end-effector and the initial
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joint angle of link 1, ql(O) (see Fig. 6.8) for a 4 d.o.f, planar manipulator with two

degrees of redundancy. The 3-D plot shows that there are numerous local minima.

Therefore, more initial guesses should be used for obtaining the optimal trajectory for the

globally minimum solution. We have examined the landscape of the optimization

problem to gain some feel for the "goodness" of the optimal solution.

6.4 Summary

In this chapter, we have developed a procedure for evaluating the effectiveness of the

use of kinematic redundancy in improving the dynamic performance of a manipulator.

The framework enables one to choose two compatible manipulators for proper

comparison. In the base reaction example, we have illustrated that without this

framework, one may compare manipulators that are not compatible and draw incorrect

conclusions regarding the effectiveness of the kinematic redundancy. We then showed

that by increasing the degree of kinematic redundancy, the base reactions of a planar

manipulator can be reduced quite drastically, but the trade-off is that the global optimal

trajectory may be very difficult to obtain. In addition, we also examined the issues of

how many parameters should be used in representing the independent variables in the

optimization problem as well as the sensitivity of the performance index to these

parameters. For the base reaction minimization problem of a 3 d.o.f, redundant

manipulator, we found that the initial end-effector orientation t_ is the most sensitive

parameter.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

We have developed a unified motion planning approach for robotic manipulators.

As we have seen, this approach has the following features:

1. It simultaneously plans the trajectory for the manipulator and synthesizes a

feedback control strategy which does not violate actuator constraints.

2. Both non-redundant and redundant manipulators are addressed in the same

framework.

3. The approach is set in an optimization framework which allows the analyst

to plan motions which optimize dynamic performance by exploiting any
available freedom in the end-effector and/or joint trajectories.

In Chapter 4 we demonstrated the application of the unified approach to planning

feedback-controlled minimum-time motions for a 2 d.o.f, non-redundant manipulator.

We have also seen how the unified approach may be used as a tool for quantitatively

studying the trade-off between tracking error and any other measure of dynamic

performance. In Chapter 5 we showed how the unified approach could be used to plan

motions which minimize the magnitude of the reactions transmitted to the base of the

manipulator, a problem of considerable importance in Space Robotics.

We have thus clearly demonstrated the power of the unified motion planning

approach in planning realizable motions for robotic manipulators.

One issue of great interest to a designer is the evaluation of the effectiveness of

kinematic redundancy. With the systematic procedure described in Chapter 6 we are able



/

95"

to compare different kinematic structures in a meaningful fashion. In the planar

examples that we studied, we found that by increasing the degree of kinematic

redundancy, we arc able to reduce the base reactions quite drastically. We also pointed

out one major disadvantage of increasing the number of excess degrees of freedom - the

global optimal solution may be difficult to obtain due to the increase in the number of

local minima.

There are some limitations on the proposed unified motion planning approach. The

unified approach is optimization-based. Therefore, it also contains all the problems

associated with the solution of non-convex non-linear programming problems. These

problems include the choice of an appropriate optimization technique for the problem,

local minima, the selection of the proper initial values for the parameters, and the choice

of appropriate convergence criteria. Another limitation of this approach is that one has to

choose a small enough integration time step for obtaining the correct simulation results;

the choice of the integration time-step depends on the parameter vector P. In this thesis,

we use a variable Kutta-Merson algorithm of MATRIXxTM which chooses an

appropriate integration time-step based on the local error tolerance criterion. However,

using this algorithm can lead to very slow simulation and consequently, planning a

trajectory using this approach for a complex manipulator can take up to 10 hours on a

Micro-Vax running under the VMS4.7 Operating System.

7.2 Future Work

7.2.1 Orientation

The unified motion planning approach in its current form can only be used for

manipulator tasks that do not impose any orientation requirement. To extend this

approach for a general task, we can expand the Jacobian equation in the following way to

map the joint velocity vector q to a generalized velocity x :

IS • .

x =Jq, (7.1)

ol

where x = Ix c0]T and co is the angular velocity of the end-effector in the base frame.

With the above generalized velocity equation we can then address the orientation issue in

a relatively straightforward fashion.
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7.2.2 Kinematic Redundancy

The parameterization of the k vector is still not computationally efficient for

manipulators with more than one degree of kinematic redundancy since we pararneterize

all the elements of k. One possible improvement is to obtain the basis vectors that

represent the nuUspace of J and use Eq. (5.12) to reduce the number of parameterized

variables from m to m-n. A simple procedure for obtaining a basis for the nullspace of a

matrix is discussed in [41]. Using this procedure, one can then obtain the column vectors

of the matrix • in Eq. (5.12). The coefficients s i, corresponding to these column vectors,

can then be pararneterized using the approach developed in Section 5.3.

7.2.3 Kinematic Constraints

In our approach, kinematic conswaints are not considered. Kinematic constraints

such as joint limits and obtacle constraints present great challenges in motion planning

problems. These constraints are very difficult to incorporate in the unified motion

planning approach without increasing the complexity of the optimization problem. Most

approaches proposed in the literature for handling kinematic constraints are not suitable

for the unified motion planning framework. Therefore an important issue that needs to be

addressed is, how the motion planning approach should be modified to include kinematic

constraints.

With the incorporation of the above considerations, the unified motion planning

approach would be an extremely powerful tool for planning motions for manipulators

operating in complex environments.



Appendix A

Multi-Criterion Optimization Example

This multi-criterion optimization problem is taken from (Osyczka, 1984,pp. 31) [29].

min fl(x)=x12+x22+12(Xl+X2 )

f2(x)=-Xl X2

subject to

gl(x) =--0.5 x]2 + 5x 1-x 2- 6__.0

g2(x) =-Xl 2 + 6x 1 -X22 + 14x 2- 42 > 0

g3(x) ----X 12 + 16x 1--x22 + 6X2- 48 > 0

The feasible space of the optimization variables xfeasible is shown in Fig. A. 1. The

space of the performance indexes (]'1 andf2) are shown in Fig. A.2. The optimal solution

x* is the straight-line x I = x 2. The Pareto optimal solutions are all the points of the lower

boundary of the hatched area.
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Using the trade-off approach, the multi-criterion optimization problem is converted

to a single criterion optimization problem.

latin f1(x)=x12+x22+12(x1+x2 )

subject to
gl(x)=-O.Sx12 + SXl-X2-6>O

g2(x) =-Xl 2 + 6x 1-x22 + 14x2-42 > 0

g3(x) = -Xl 2 + 16x 1-x22 + 6x 2- 48 > 0

f2(x) =-X 1X2 -< p

The optimal solutions for different values of p are tabulated in Table A-1. The

above problem was also solved using the weighting objective method which minimizes a

weighted sum of fl and ./'2 with weighting factors w 1 and w 2. For this example, the

weighted objective method has difficulty obtaining the Pareto optimal solutions. The

optimal solution which is obtained by the weighted objective method is always x*=(3,3),

regardless of what values of w 1 and w2 were used.
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-lO

-20

-30

I 'Jx fl(x) f2(x)

(3,3) [90.0 -9

(3.16,3.16) 95.89 -10

(4.47,4.47) 147.335 -20

(5.47,5.47) 191.45 -30

Table A-I Results of the Trade-Off Approach



/

Appendix B

Base Reaction Equations for a 3 d.o.f. Planar Manipulator

In this section, we derive the dynamic equations for the base reactions transmitted by the

manipulator while performing a task.

Considering a 3 d.o.f, planar manipulator, the magnitude of the base moment (no) is

simply equal to the magnitude of the torque produced by the first joint.

It is easy to show that in microgravity condition, the force transmitted to the base is equal

to the sum of the inertia forces for all the links. Let the mass of link i be m i and the

position of the center of mass of link i with respect to a reference frame in the base be

Xc, i. For a manipulator of m degrees of freedom, the base forcefo is simply given by

fo= _. rniJ(c, i (B.1)
i=l

where Xc,i is the acceleration of center of mass of link i.

Using the Jacobian relation, the velocity of the center of gravity of link i, Xc,i, is given by

where J¢,i is the Jacobian matrix that relates Jr'c,i and q.

Taking the time-derivative of above equation, the acceleration of the center of mass of

link i is simply given by

X'c,i=Jcg_l +,lc,iq (B.3)

Substituting Eq. (B.1) in Eq. (B.3),fo can be expressed as

m

fo= _ mi (Jc,i¢I+Jc,iil) (B.4)
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Combining base forceand base moment vectors,we can expressF b as

Fb = (f;l=A _ + B(q fl) (B.5)

where A=( _m,.l# "t, B is the collection of nonlinear terms in #, and M is the mass
_Ix row ofM"

matrix ofa manipulator.

For a 3 d.o.f, planar manipulator, the base force vector has a x-direction component (fo)x

and a y-direction component (fo)y. The base moment vector has only a z-direction

component, (no) z. Hence, the base reactions vector is given by

Fb = [ (fo)x (fo)y (no)z] r"

Let the elements of A be Aij, 0=1,2,3) and 0=1,2,3). The expressions for Aij arc:

A 11---lc3m3 s 123-12m3 s 12-Ic2m2 s 12-/1 m2s 1-lc 1m 1s 1

A 12=-lc3m3 s 123-/2m3s 12-1c2ra2 $12

A13---I c3m3s123

A21=lc3m3c123+12m3c12+lc2m2c12+llm2Cl+lclmlC1

A 22=l cam3C123 +12m3c12 +lc2m2c12

A 23=l c2m3c123

A31=lllc3m3c23+2121c3m3c3+21112ra3+21llc2m2c2+lc32m3

+122m3+l12m3+Ic22m2+l12m2+lc12ral+ll+12+13

A 32=l l lc3m3c23 +2121c3m3c3+l l12m3c2+l l lc2m2c2+l c32m3+122m3

+Ic22m2+I2+13

A33=lllc3m3c23+12123m3c23+12c3m3c3+Ic32m3

Let the elements of B be denoted by B i and they are given by:

B 1-----[q32+2(q2+ql)q3+(tll+q2 )2]1c3m3c123-(/2m3 +

lc2m2)cl 2(q 1+q2)2"(11 m3 +l lm2+lc 1m 1)c lt_ 12.

B2--"'[t132+(2_2+tll)t13+(tll +t12)2] lc3m3s123-

(12m3+lc2m2)sl2(tll+il2)2-[llm3+llm2+lclml)]Slill 2.

lB.6)
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B3=-[(q2+q3)2+2qlq3+2q l q2]ll lc3m3s23-(2q2q3+2qlq3 +

q32)121c3m3s3-( q 2+ 2_1q2 )I112m353-( q2 +2_ l q2 )l l l c2m2s2" (B.7)
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Appendix C

Joint Acceleration Equation for

a 4 d.o.f. Planar Manipulator

The joint acceleration equation can be obtained by differentiating Eq. (5.9) with

respect to time.

ii=J+_+)+x+Wk+Wk (c.1)

where W = I - J+ J.

The derivative of W can be obtained as

W=-J+ J-J+ J (C.2)

The Jacobian J is given by the following equations:

J11 =-llsl-12s 12-13 s123-/4 s1234

•/21 = llC1+12c12+13c123 +/4c 1234

J12 =-12s12-13s123-14s1234

J22 = 12c 12+13c 123+14 c1234

J13 =-13s123-14s1234

J23-/sq23+t4c1234
J14 =-/4s12M

J24=14c1234 (C.3)

The derivative of the pseudo-inverse .I+ is given by

j+=jrQ+jrQ

where Q = (jjT)-I.

The derivative of Q is given by the following equation:

(C.4)
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-5"_ ad+acl-Sc-b_ (d

_i/- (ad_bc)2 _,-c

where

a =J112+J12+J132+J142

b = J11J12+J12J22+J13J23+J14J24

c = J21J1 l+J22J12+J23J13+J24J14

d=J212+J222+J232+J242

The time derivatives of a, b, c, d can be expressed as follows:

dr=2(Jl lJl l+J12Jl2+J13Jl3+J14Jl4)

b =,Jl 1J21 +Jll)21+J12_22+J12J22+J13J23+J13)23+J13)23+J14J24

#,4)24

6 =)21Jll + J21)11+J22)12+)22J12+)23J13+J23)13+J23J13+)2J14+

J24)14

d= 2(J21)21+J22J22+J23)23+J24)24)

The derivatives of the elements of the Jacobian matrix are:

Jll =-IlC1¢1-12c12q12--13C123#123--14C123441234

"/21 =--llSl#l--12512q12--13S123#123--/4S1234#1234

J12 = -12cl2q 12-13c123q 123-14 c 1234 t_1234

J22=-12s12q12-13s123q123-14s1234q1234

J13 =-[3c123q123-[4c1234q1234

J23 =-13s123q123-/4 s1234q1234

J14=-14c1234q1234

J24 =-1451234q1234

(C.5)

(C.6)

(C.7)
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Appendix D

Inverse Kinematic Equations for
a 3 d.o.f and a 4 d.o.f. Planar Manipulator

(1) 3 d.o.f, planar manipulators:

In our inverse kinematic equations, a=ql+q2+q3 , is chosen to be the independent

variable. Using the following equations, the joint variables ql, q2, q3 can be obtained.

(Xl-I3eft)2+ (x2-13SG) 2-/12-12 2

c2 "- 211 l2
(D.1)

s 2 = + sqrt(1--c2 2) (/9.2)

q2 = ATAN2 (s2,c 2) (D.3)

k 1 =l 1+12c 2 (D.4)

k2=12s 2 (D.5)

k3 =x 1- 13cG

t4-'xz-13scr

ql = ATAN2 (k4,k3)-ATAN2 (k2,kI)

q3 = a-ql-q2

(D.6)

(D.7)

(D.8)

(D.9)

(2) 4 d.o.f, planar manipulators:

In our inverse kinematic equations,

independent variables.

be obtained.

o=ql+q2+q3+q4, and ql are chosen as the

Using the following equations, the joint variables q2, q3, q4 can

Xl'=X 1-I 1C1
I

x 2 =x2-11s I (D.IO)
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• • "2
(x 1 - l4 CO)2 + (x2 -14SO) 2-122-13

C3 - 2 l2 l3

s 3 = ± sqrt(1-c32)

q3 = ATAN2 (s3,c 3)

k1=12+13c3

k2=13s 3

k3 =Xl'-I 4 co

k4=x2"-14sO

q2"=ATAN2 (k4,k3)- ATAN2 (_,k_)

q2=q2'-ql

q4=o-ql-q2-q3

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D.16)

(D.17)

(D._8)

(D.19)
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